PARTICLE FILTER GREYWOLF OPTIMIZATION FOR PARAMETER ESTIMATION OF NONLINEAR DYNAMIC SYSTEM

被引:0
作者
Zhang, Cuilian [1 ]
Yang, Xu [1 ]
Li Lingbo [1 ]
Wong, Derek F. [1 ]
机构
[1] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
来源
PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR) | 2018年
关键词
Particle Filter; MCMC; Grey Wolf Optimization; Parameter Estimation; UNCERTAINTY; MCMC;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Particle filter samplers, Markov chain Monte Carlo (MCMC)samplers, and swarm intelligence can be used for parameter estimation with posterior probability distribution in nonlinear dynamic system. However the global exploration capabilities and efficiency of the sampler rely on the moving step of particle filter sampler. In this paper, we presented a mixing sampler algorithm: particle filter grey wolf optimization sampler(PF-GWO). PF-GWO sampler is operated by combining grey wolf optimization with Metropolis ratio into framework of particle filter, which is suitable to estimate unknown static parameters of nonlinear dynamic models. Based on Bayesian framework, parameter estimation of Lorenz model shows that PF-GWO sampler is superior to other combined particle filter sampler algorithms with large range prior distribution.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 13 条
  • [1] An introduction to MCMC for machine learning
    Andrieu, C
    de Freitas, N
    Doucet, A
    Jordan, MI
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 5 - 43
  • [2] [Anonymous], 2009, WATER RESOUR RES, V44, P67
  • [3] THE FUTURE OF DISTRIBUTED MODELS - MODEL CALIBRATION AND UNCERTAINTY PREDICTION
    BEVEN, K
    BINLEY, A
    [J]. HYDROLOGICAL PROCESSES, 1992, 6 (03) : 279 - 298
  • [4] Del Moral P, 2003, J ROY STAT SOC, V68, P411
  • [5] On sequential Monte Carlo sampling methods for Bayesian filtering
    Doucet, A
    Godsill, S
    Andrieu, C
    [J]. STATISTICS AND COMPUTING, 2000, 10 (03) : 197 - 208
  • [6] Doucet A., 2003, INTRO MCMC MACHINE L
  • [7] Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach
    Freer, J
    Beven, K
    Ambroise, B
    [J]. WATER RESOURCES RESEARCH, 1996, 32 (07) : 2161 - 2173
  • [8] Jeremiah E, 2011, WATER RESOUR RES, V47, P218
  • [9] Efficient hydrological model parameter optimization with Sequential Monte Carlo sampling
    Jeremiah, Erwin
    Sisson, Scott A.
    Sharma, Ashish
    Marshall, Lucy
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 38 : 283 - 295
  • [10] Lee A., 2012, The wise leader, P1