PARTICLE FILTER GREYWOLF OPTIMIZATION FOR PARAMETER ESTIMATION OF NONLINEAR DYNAMIC SYSTEM
被引:0
作者:
Zhang, Cuilian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R ChinaUniv Macau, Fac Sci & Technol, Macau 999078, Peoples R China
Zhang, Cuilian
[1
]
Yang, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R ChinaUniv Macau, Fac Sci & Technol, Macau 999078, Peoples R China
Yang, Xu
[1
]
Li Lingbo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R ChinaUniv Macau, Fac Sci & Technol, Macau 999078, Peoples R China
Li Lingbo
[1
]
Wong, Derek F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R ChinaUniv Macau, Fac Sci & Technol, Macau 999078, Peoples R China
Wong, Derek F.
[1
]
机构:
[1] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
来源:
PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR)
|
2018年
关键词:
Particle Filter;
MCMC;
Grey Wolf Optimization;
Parameter Estimation;
UNCERTAINTY;
MCMC;
D O I:
暂无
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Particle filter samplers, Markov chain Monte Carlo (MCMC)samplers, and swarm intelligence can be used for parameter estimation with posterior probability distribution in nonlinear dynamic system. However the global exploration capabilities and efficiency of the sampler rely on the moving step of particle filter sampler. In this paper, we presented a mixing sampler algorithm: particle filter grey wolf optimization sampler(PF-GWO). PF-GWO sampler is operated by combining grey wolf optimization with Metropolis ratio into framework of particle filter, which is suitable to estimate unknown static parameters of nonlinear dynamic models. Based on Bayesian framework, parameter estimation of Lorenz model shows that PF-GWO sampler is superior to other combined particle filter sampler algorithms with large range prior distribution.