Comparing cyclotomic structures on different models for topological Hochschild homology

被引:5
作者
Dotto, Emanuele [1 ]
Malkiewich, Cary [2 ]
Patchkoria, Irakli [3 ]
Sagave, Steffen [4 ]
Woo, Calvin [5 ]
机构
[1] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
[2] SUNY Binghamton, Dept Math, POB 6000, Binghamton, NY 13902 USA
[3] Univ Aberdeen, Dept Math, Fraser Noble Bldg, Aberdeen AB24 3UE, Scotland
[4] Radboud Univ Nijmegen, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
[5] Indiana Univ, Dept Math, 831 E 3rd St, Bloomington, IN 47405 USA
基金
新加坡国家研究基金会;
关键词
ALGEBRAIC K-THEORY; SYMMETRIC SPECTRA; HOMOTOPY-THEORY; TRACE;
D O I
10.1112/topo.12116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The topological Hochschild homology THH(A) of an orthogonal ring spectrum A can be defined by evaluating the cyclic bar construction on A or by applying Bokstedt's original definition of THH to A. In this paper, we construct a chain of stable equivalences of cyclotomic spectra comparing these two models for THH(A). This implies that the two versions of topological cyclic homology resulting from these variants of THH(A) are equivalent.
引用
收藏
页码:1146 / 1173
页数:28
相关论文
共 15 条
[1]   Real topological Hochschild homology [J].
Dotto, Emanuele ;
Moi, Kristian ;
Patchkoria, Irakli ;
Reeh, Sune Precht .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (01) :63-152
[2]   Localization theorems in topological Hochschild homology and topological cyclic homology [J].
Blumberg, Andrew J. ;
Mandell, Michael A. .
GEOMETRY & TOPOLOGY, 2012, 16 (02) :1053-1120
[3]   Topological Hochschild homology and higher characteristics [J].
Campbell, Jonathan A. ;
Ponto, Kate .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (02) :965-1017
[4]   Localization sequences for logarithmic topological Hochschild homology [J].
Rognes, John ;
Sagave, Steffen ;
Schlichtkrull, Christian .
MATHEMATISCHE ANNALEN, 2015, 363 (3-4) :1349-1398
[5]   Symmetric spectra and topological Hochschild homology [J].
Shipley, B .
K-THEORY, 2000, 19 (02) :155-183
[6]   The Segal conjecture for topological Hochschild homology of complex cobordism [J].
Lunoe-Nielsen, Sverre ;
Rognes, John .
JOURNAL OF TOPOLOGY, 2011, 4 (03) :591-622
[7]   Topological Hochschild homology and the Bass trace conjecture [J].
Berrick, A. J. ;
Hesselholt, Lars .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 704 :169-185
[8]   Some recent advances in topological Hochschild homology [J].
Mathew, Akhil .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (01) :1-44
[9]   Detecting periodic elements in higher topological Hochschild homology [J].
Veen, Torleif .
GEOMETRY & TOPOLOGY, 2018, 22 (02) :693-756
[10]   Computational tools for twisted topological Hochschild homology of equivariant spectra [J].
Adamyk, Katharine ;
Gerhardt, Teena ;
Hess, Kathryn ;
Klang, Inbar ;
Kong, Hana Jia .
TOPOLOGY AND ITS APPLICATIONS, 2022, 316