Comparing cyclotomic structures on different models for topological Hochschild homology

被引:5
|
作者
Dotto, Emanuele [1 ]
Malkiewich, Cary [2 ]
Patchkoria, Irakli [3 ]
Sagave, Steffen [4 ]
Woo, Calvin [5 ]
机构
[1] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
[2] SUNY Binghamton, Dept Math, POB 6000, Binghamton, NY 13902 USA
[3] Univ Aberdeen, Dept Math, Fraser Noble Bldg, Aberdeen AB24 3UE, Scotland
[4] Radboud Univ Nijmegen, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
[5] Indiana Univ, Dept Math, 831 E 3rd St, Bloomington, IN 47405 USA
基金
新加坡国家研究基金会;
关键词
ALGEBRAIC K-THEORY; SYMMETRIC SPECTRA; HOMOTOPY-THEORY; TRACE;
D O I
10.1112/topo.12116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The topological Hochschild homology THH(A) of an orthogonal ring spectrum A can be defined by evaluating the cyclic bar construction on A or by applying Bokstedt's original definition of THH to A. In this paper, we construct a chain of stable equivalences of cyclotomic spectra comparing these two models for THH(A). This implies that the two versions of topological cyclic homology resulting from these variants of THH(A) are equivalent.
引用
收藏
页码:1146 / 1173
页数:28
相关论文
共 15 条
  • [1] Real topological Hochschild homology
    Dotto, Emanuele
    Moi, Kristian
    Patchkoria, Irakli
    Reeh, Sune Precht
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (01) : 63 - 152
  • [2] Localization theorems in topological Hochschild homology and topological cyclic homology
    Blumberg, Andrew J.
    Mandell, Michael A.
    GEOMETRY & TOPOLOGY, 2012, 16 (02) : 1053 - 1120
  • [3] Topological Hochschild homology and higher characteristics
    Campbell, Jonathan A.
    Ponto, Kate
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (02): : 965 - 1017
  • [4] Localization sequences for logarithmic topological Hochschild homology
    Rognes, John
    Sagave, Steffen
    Schlichtkrull, Christian
    MATHEMATISCHE ANNALEN, 2015, 363 (3-4) : 1349 - 1398
  • [5] Symmetric spectra and topological Hochschild homology
    Shipley, B
    K-THEORY, 2000, 19 (02): : 155 - 183
  • [6] The Segal conjecture for topological Hochschild homology of complex cobordism
    Lunoe-Nielsen, Sverre
    Rognes, John
    JOURNAL OF TOPOLOGY, 2011, 4 (03) : 591 - 622
  • [7] Topological Hochschild homology and the Bass trace conjecture
    Berrick, A. J.
    Hesselholt, Lars
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 704 : 169 - 185
  • [8] Some recent advances in topological Hochschild homology
    Mathew, Akhil
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (01) : 1 - 44
  • [9] Detecting periodic elements in higher topological Hochschild homology
    Veen, Torleif
    GEOMETRY & TOPOLOGY, 2018, 22 (02) : 693 - 756
  • [10] Generalized spectral categories, topological Hochschild homology and trace maps
    Tabuada, Goncalo
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (01): : 137 - 213