A Novel Divisional Bisection Method for the Symmetric Tridiagonal Eigenvalue Problem

被引:3
作者
Chu, Wei [1 ]
Zhao, Yao [1 ,2 ]
Yuan, Hua [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Naval Architecture & Ocean Engn Hyd, Wuhan 430074, Peoples R China
关键词
symmetric tridiagonal matrix; eigenvalue solver; matrix division; parallel algorithm; PARALLEL QR ALGORITHM; CONQUER ALGORITHM; DIVIDE; IMPLEMENTATION; EIGENPAIRS; MATRICES;
D O I
10.3390/math10152782
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The embarrassingly parallel nature of the Bisection Algorithm makes it easy and efficient to program on a parallel computer, but with an expensive time cost when all symmetric tridiagonal eigenvalues are wanted. In addition, few methods can calculate a single eigenvalue in parallel for now, especially in a specific order. This paper solves the issue with a new approach that can parallelize the Bisection iteration. Some pseudocodes and numerical results are presented. It shows our algorithm reduces the time cost by more than 35-70% compared to the Bisection algorithm while maintaining its accuracy and flexibility.
引用
收藏
页数:22
相关论文
共 46 条
  • [1] On the block Lanczos and block Golub-Kahan reduction methods applied to discrete ill-posed problems
    Alqahtani, Abdulaziz
    Gazzola, Silvia
    Reichel, Lothar
    Rodriguez, Giuseppe
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (05)
  • [2] Charge-Current Output in Plasma-Immersed Hydrogen Atom with Noncentral Interaction
    Bahar, Mustafa Kemal
    [J]. ANNALEN DER PHYSIK, 2021, 533 (11)
  • [3] Bala B, 2019, APPL APPL MATH, V14, P1132
  • [4] Ballard Grey., 2018, Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. SPAA T8, P55, DOI DOI 10.1145/3210377.3210415
  • [5] Chaos for the Dynamics of Toeplitz Operators
    Bartoll, Salud
    Jimenez-Munguia, Ronald Richard
    Martinez-Avendano, Ruben Alejandro
    Peris, Alfred
    [J]. MATHEMATICS, 2022, 10 (03)
  • [7] Bhatia R, 2007, CLASS APPL MATH, V53, P1, DOI 10.1137/1.9780898719079
  • [8] Brent RP., 1973, ALGORITHMS MINIMIZAT
  • [9] Development of powerful algorithm for maximal eigenpair
    Chen, Mu-Fa
    Li, Yue-Shuang
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (03) : 493 - 519
  • [10] Efficient computation of tridiagonal matrices largest eigenvalue
    Coelho, Diego F. G.
    Dimitrov, Vassil S.
    Rakai, L.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 268 - 275