A single neuron model with memristive synaptic weight

被引:33
作者
Hua, Mengjie [1 ]
Bao, Han [1 ]
Wu, Huagan [1 ]
Xu, Quan [1 ]
Bao, Bocheng [1 ]
机构
[1] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
关键词
Neuron model; memristive synaptic weight; neuron dynamics; coexisting bifurcation; hardware circuit; MULTIPLE ATTRACTORS; NUMERICAL-ANALYSES; NETWORK; DYNAMICS; CIRCUIT; DRIVEN; BRAIN; TIME;
D O I
10.1016/j.cjph.2021.10.042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Synaptic connection weight in neuron is adaptive and memristive synaptic weight can be taken as a changeable connection weight. To exhibit its kinetic effect, a single neuron model with memristive synaptic weight is thereby presented. The memristive single neuron model has time-varying equilibrium points with the changes in number and stability, resulting in the appearance of complex neuron dynamics. Using multiple numerical analyses, complex neuron dynamics is studied in details, including parameter-related dynamics distributions, phase portraits with equilibrium stabilities, and coexisting bifurcation plots. Furthermore, with the analog circuit design, printed-circuit board (PCB)-based experiments are carried out. The physically captured results well validate the numerical ones.
引用
收藏
页码:217 / 227
页数:11
相关论文
共 42 条
[1]   Stability analysis of uncertain fuzzy Hopfield neural networks with time delays [J].
Ali, M. Syed ;
Balasubramaniam, P. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (06) :2776-2783
[2]   A 2D Hopfield Neural Network approach to mechanical beam damage detection [J].
Almeida, Juliana ;
Alonso, Hugo ;
Ribeiro, Pedro ;
Rocha, Paula .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (04) :1081-1095
[3]   A Hybrid CMOS-Memristor Neuromorphic Synapse [J].
Azghadi, Mostafa Rahimi ;
Linares-Barranco, Bernabe ;
Abbott, Derek ;
Leong, Philip H. W. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2017, 11 (02) :434-445
[4]   Memristive neuron model with an adapting synapse and its hardware experiments [J].
Bao, BoCheng ;
Zhu, YongXin ;
Ma, Jun ;
Bao, Han ;
Wu, HuaGan ;
Chen, Mo .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (05) :1107-1117
[5]   Chaotic Bursting Dynamics and Coexisting Multistable Firing Patterns in 3D Autonomous Morris-Lecar Model and Microcontroller-Based Validations [J].
Bao, Bocheng ;
Yang, Qinfeng ;
Zhu, Lei ;
Bao, Han ;
Xu, Quan ;
Yu, Yajuan ;
Chen, Mo .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (10)
[6]   Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network [J].
Bao, Bocheng ;
Qian, Hui ;
Wang, Jiang ;
Xu, Quan ;
Chen, Mo ;
Wu, Huagan ;
Yu, Yajuan .
NONLINEAR DYNAMICS, 2017, 90 (04) :2359-2369
[7]   Coexisting Behaviors of Asymmetric Attractors in Hyperbolic-Type Memristor based Hopfield Neural Network [J].
Bao, Bocheng ;
Qian, Hui ;
Xu, Quan ;
Chen, Mo ;
Wang, Jiang ;
Yu, Yajuan .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2017, 11
[8]   Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera [J].
Bao, Han ;
Zhang, Yunzhen ;
Liu, Wenbo ;
Bao, Bocheng .
NONLINEAR DYNAMICS, 2020, 100 (01) :937-950
[9]   Smooth nonlinear fitting scheme for analog multiplierless implementation of Hindmarsh-Rose neuron model [J].
Cai, Jianming ;
Bao, Han ;
Xu, Quan ;
Hua, Zhongyun ;
Bao, Bocheng .
NONLINEAR DYNAMICS, 2021, 104 (04) :4379-4389
[10]   Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons [J].
Chen, Chengjie ;
Chen, Jingqi ;
Bao, Han ;
Chen, Mo ;
Bao, Bocheng .
NONLINEAR DYNAMICS, 2019, 95 (04) :3385-3399