The Erdos-Ginzburg-Ziv theorem for dihedral groups

被引:18
作者
Gao, Weidong [1 ]
Lu, Zaiping [1 ]
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.jpaa.2007.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 23 be an integer and let D-2n be the dihedral group of order 2n. It is proved that, if g(1), g(2), . . . , g(3n) is a sequence of 3n elements in D-2n, then there exist 2n distinct indices i(1), i(2),..., i(2)n such that gi(1)gi(2)... gi(2n)= 1. This result is a sharpening of the famous Erdos-Ginzburg-Ziv theorem for G = D2n. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:311 / 319
页数:9
相关论文
共 12 条
[1]  
DIMITROV V, 2004, MATH BALKANICA NS, V18, P129
[2]  
ERDOS P, 1961, B RES COUNC ISRAEL, VF 10, P41
[3]  
Gao W., 1996, ACTA MATH SINICA, V39, P514
[4]   A combinatorial problem on finite Abelian groups [J].
Gao, WD .
JOURNAL OF NUMBER THEORY, 1996, 58 (01) :100-103
[5]   An addition theorem for finite cyclic groups [J].
Gao, WD .
DISCRETE MATHEMATICS, 1997, 163 (1-3) :257-265
[6]   On subsequence weighted products [J].
Hamidoune, YO ;
Quiroz, D .
COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (04) :485-489
[7]  
NATHANSON MB, 1996, ADDITIVE NUMBER THEO
[8]  
Olson J. E., 1977, Number Theory and Algebra, P215
[9]   COMBINATORIAL PROBLEM OF ERDOS, GINZBURG, AND ZIV [J].
OLSON, JE .
JOURNAL OF NUMBER THEORY, 1976, 8 (01) :52-57
[10]   BOUNDS FOR COUNTER-EXAMPLES TO ADDITION THEOREMS IN SOLVABLE-GROUPS [J].
YUSTER, T .
ARCHIV DER MATHEMATIK, 1988, 51 (03) :223-231