The Erdos-Ginzburg-Ziv theorem for dihedral groups

被引:17
作者
Gao, Weidong [1 ]
Lu, Zaiping [1 ]
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.jpaa.2007.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 23 be an integer and let D-2n be the dihedral group of order 2n. It is proved that, if g(1), g(2), . . . , g(3n) is a sequence of 3n elements in D-2n, then there exist 2n distinct indices i(1), i(2),..., i(2)n such that gi(1)gi(2)... gi(2n)= 1. This result is a sharpening of the famous Erdos-Ginzburg-Ziv theorem for G = D2n. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:311 / 319
页数:9
相关论文
共 12 条