Essential Protein Identification Based on Essential Protein-Protein Interaction Prediction by Integrated Edge Weights

被引:0
作者
Jiang, Yuexu [1 ]
Wang, Yan [1 ,2 ]
Pang, Wei [1 ,3 ]
Chen, Liang [1 ]
Sun, Huiyan [1 ]
Liang, Yanchun [1 ]
Blanzieri, Enrico [2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Key Lab Symbol Computat & Knowledge Engn, Changchun 130023, Peoples R China
[2] Univ Trento, Dept Informat Engn & Comp Sci, Povo, Italy
[3] Univ Aberdeen, Sch Nat & Comp Sci, Aberdeen, Scotland
来源
2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2014年
关键词
Essential Protein; Essential Protein-protein Interaction; Integrated Edge Weights; SACCHAROMYCES-CEREVISIAE; DATABASE; NETWORKS; SITE; TOOL;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Essential proteins are crucial to cellular survival and development. Traditionally, essential proteins are identified by knock-out experiments, which are expensive and often fatal to the target organisms. Regarding this, an important approach to essential protein identification is through computational prediction. In this research, we present a novel computational method, Integrated Edge Weights (IEW), to innovatively predict proteins' essentiality based on essential protein-protein interactions. The experimental results on all three organisms: Saccharomyces cerevisiae (Yeast), Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegans) show that IEW achieves better performance than the state-of-the-art methods in terms of precision-recall. Furthermore, we have demonstrated that the highly-ranked protein-protein interactions predicted by our approach tend to be biologically significant in Yeast, E. coli, and C. elegans protein-protein interaction (PPI) networks.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   Predicting genes for orphan metabolic activities using phylogenetic profiles [J].
Chen, LF ;
Vitkup, D .
GENOME BIOLOGY, 2006, 7 (02)
[3]   OGEE: an online gene essentiality database [J].
Chen, Wei-Hua ;
Minguez, Pablo ;
Lercher, Martin J. ;
Bork, Peer .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D901-D906
[4]   AUTOGENOUS CONTROL OF THE S10 RIBOSOMAL-PROTEIN OPERON OF ESCHERICHIA-COLI - GENETIC DISSECTION OF TRANSCRIPTIONAL AND POSTTRANSCRIPTIONAL REGULATION [J].
FREEDMAN, LP ;
ZENGEL, JM ;
ARCHER, RH ;
LINDAHL, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (18) :6516-6520
[5]   Why do hubs tend to be essential in protein networks? [J].
He, Xionglei ;
Zhang, Jianzhi .
PLOS GENETICS, 2006, 2 (06) :826-834
[6]   Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources [J].
Huang, Da Wei ;
Sherman, Brad T. ;
Lempicki, Richard A. .
NATURE PROTOCOLS, 2009, 4 (01) :44-57
[7]   Lethality and centrality in protein networks [J].
Jeong, H ;
Mason, SP ;
Barabási, AL ;
Oltvai, ZN .
NATURE, 2001, 411 (6833) :41-42
[8]   InterProScan 5: genome-scale protein function classification [J].
Jones, Philip ;
Binns, David ;
Chang, Hsin-Yu ;
Fraser, Matthew ;
Li, Weizhong ;
McAnulla, Craig ;
McWilliam, Hamish ;
Maslen, John ;
Mitchell, Alex ;
Nuka, Gift ;
Pesseat, Sebastien ;
Quinn, Antony F. ;
Sangrador-Vegas, Amaia ;
Scheremetjew, Maxim ;
Yong, Siew-Yit ;
Lopez, Rodrigo ;
Hunter, Sarah .
BIOINFORMATICS, 2014, 30 (09) :1236-1240
[9]   High-betweenness proteins in the yeast protein interaction network [J].
Joy, MP ;
Brock, A ;
Ingber, DE ;
Huang, S .
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2005, (02) :96-103
[10]   L23 protein functions as a chaperone docking site on the ribosome [J].
Kramer, G ;
Rauch, T ;
Rist, W ;
Vorderwülbecke, S ;
Patzelt, H ;
Schulze-Specking, A ;
Ban, N ;
Deuerling, E ;
Bukau, B .
NATURE, 2002, 419 (6903) :171-174