Churn Prediction in Telecommunication Industry Using Rough Set Approach

被引:30
|
作者
Amin, Adnan [1 ]
Shehzad, Saeed [2 ]
Khan, Changez [1 ]
Ali, Imtiaz [1 ]
Anwar, Sajid [1 ]
机构
[1] Inst Management Sci Peshawar, Peshawar 25000, Pakistan
[2] City Univ Sci & Technol, Peshawar 25000, Pakistan
关键词
Churn Prediction; Rough Set Theory; Classification;
D O I
10.1007/978-3-319-10774-5_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Customer churn is a crucial activity in rapidly growing and mature competitive telecommunication sector and is one of the greatest importance for a project manager. Due to the high cost of acquiring new customers, customer churn prediction has emerged as an indispensable part of telecom sectors' strategic decision making and planning process. It is important to forecast customer churn behavior in order to retain those customers that will churn or possible may churn. This study is another attempt which makes use of rough set theory, a rule-based decision making technique, to extract rules for churn prediction. Experiments were performed to explore the performance of four different algorithms (Exhaustive, Genetic, Covering, and LEM2). It is observed that rough set classification based on genetic algorithm, rules generation yields most suitable performance out of the four rules generation algorithms. Moreover, by applying the proposed technique on publicly available dataset, the results show that the proposed technique can fully predict all those customers that will churn or possibly may churn and also provides useful information to strategic decision makers as well.
引用
收藏
页码:83 / 95
页数:13
相关论文
共 50 条
  • [31] ChurnNet: Deep Learning Enhanced Customer Churn Prediction in Telecommunication Industry
    Saha, Somak
    Saha, Chamak
    Haque, Md. Mahidul
    Alam, Md. Golam Rabiul
    Talukder, Ashis
    IEEE ACCESS, 2024, 12 : 4471 - 4484
  • [32] Customer Churn Prediction in telecommunication Industry: with and without Counter-Example
    Amin, Adnan
    Khan, Changez
    Ali, Imtiaz
    Anwar, Sajid
    2014 EUROPEAN NETWORK INTELLIGENCE CONFERENCE (ENIC), 2014, : 134 - 137
  • [33] Telecommunication Subscribers' Churn Prediction Model Using Machine Learning
    Qureshi, Saad Ahmed
    Rehman, Ammar Saleem
    Qamar, Ali Mustafa
    Kamal, Aatif
    Rehman, Ahsan
    2013 EIGHTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT (ICDIM), 2013, : 131 - 136
  • [34] Enhanced Prediction Model for Customer Churn in Telecommunication Using EMOTE
    Babu, S.
    Ananthanarayanan, N. R.
    INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND APPLICATIONS, ICICA 2016, 2018, 632 : 465 - 475
  • [35] A novel customer churn prediction model for the telecommunication industry using data transformation methods and feature selection
    Sana, Joydeb Kumar
    Abedin, Mohammad Zoynul
    Rahman, M. Sohel
    Rahman, M. Saifur
    PLOS ONE, 2022, 17 (12):
  • [36] Customer retention and churn prediction in the telecommunication industry: a case study on a Danish university
    Saleh, Sarkaft
    Saha, Subrata
    SN APPLIED SCIENCES, 2023, 5 (07):
  • [37] Customer retention and churn prediction in the telecommunication industry: a case study on a Danish university
    Sarkaft Saleh
    Subrata Saha
    SN Applied Sciences, 2023, 5
  • [38] Not Too Late to Identify Potential Churners: Early Churn Prediction in Telecommunication Industry
    Zhang, Jingjiao
    Fu, Jiaqing
    Zhang, Chunhong
    Ke, Xin
    Hu, Zheng
    2016 3RD IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT), 2016, : 194 - 199
  • [39] ABC Based Neural Network Approach for Churn Prediction in Telecommunication Sector
    Paliwal, Priyanka
    Kumar, Divya
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS (ICTIS 2017) - VOL 2, 2018, 84 : 343 - 349
  • [40] Fraud detection in telecommunication: A rough fuzzy set based approach
    Xu, Wei
    Pang, Ye
    Ma, Jian
    Wang, Shou-Yang
    Hao, Gang
    Zeng, Shuo
    Qian, Yu-Hua
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 1249 - +