Generalizing Bounds on the Minimum Distance of Cyclic Codes Using Cyclic Product Codes

被引:0
作者
Zeh, Alexander [1 ]
Wachter-Zeh, Antonia [1 ]
Gadouleau, Maximilien [2 ]
Bezzateev, Sergey [3 ]
机构
[1] Univ Ulm, Inst Commun Engn, D-89069 Ulm, Germany
[2] Univ Durham, Sch Engn & Comp Sci ECS, Durham, England
[3] Saint Petersburg State Univ, Airspace Instrumentat, St Petersburg, Russia
来源
2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT) | 2013年
关键词
Cyclic Code; Cyclic Product Code; Bound on the Minimum Distance; Efficient Decoding;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two generalizations of the Hartmann-Tzeng ( HT) bound on the minimum distance of q-ary cyclic codes are proposed. The first one is proven by embedding the given cyclic code into a cyclic product code. Furthermore, we show that unique decoding up to this bound is always possible and outline a quadratic-time syndrome-based error decoding algorithm. The second bound is stronger and the proof is more involved. Our technique of embedding the code into a cyclic product code can be applied to other bounds, too and therefore generalizes them.
引用
收藏
页码:126 / +
页数:2
相关论文
共 18 条
[1]   CASCADE DECODING OF CYCLIC PRODUCT CODES [J].
ABRAMSON, N .
IEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGY, 1968, CO16 (03) :398-&
[2]  
[Anonymous], 1959, Chi res
[3]   A new bound for the minimum distance of a cyclic code from its defining set [J].
Betti, Emanuele ;
Sala, Massimiliano .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (08) :3700-3706
[4]  
Bose R. C., 1960, Information and control, DOI DOI 10.1016/S0019-9958(60)90287-4
[5]  
Boston N., 2001, ELECT NOTES DISCRETE, V6, P385, DOI DOI 10.1016/S1571-0653(04)00190-8
[6]   CYCLIC PRODUCT CODES [J].
BURTON, HO ;
IWELDON, EJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (03) :433-439
[7]   ERROR-LOCATING PAIRS FOR CYCLIC CODES [J].
DUURSMA, IM ;
KOTTER, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (04) :1108-1121
[8]   A GENERALIZED EUCLIDEAN ALGORITHM FOR MULTISEQUENCE SHIFT-REGISTER SYNTHESIS [J].
FENG, GL ;
TZENG, KK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (03) :584-594
[9]   GENERALIZATIONS OF BCH BOUND [J].
HARTMANN, CR ;
TZENG, KK .
INFORMATION AND CONTROL, 1972, 20 (05) :489-&
[10]   DECODING BEYOND BCH BOUND [J].
HARTMANN, CR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (03) :441-+