Sol-gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte

被引:42
作者
Kotobuki, Masashi [1 ]
Koishi, Masaki [1 ]
机构
[1] Hakodate Natl Coll Technol, Dept Mat & Environm Engn, Hakodate, Hokkaido 0428501, Japan
关键词
Solid electrolyte; Sol-gel method; Lithium battery; NASICON-type electrolyte; LITHIUM BATTERY; CONDUCTIVITY; COMPATIBILITY; FABRICATION; ANODE;
D O I
10.1016/j.ceramint.2015.03.064
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effect of calcination on Li ion conductivity of Li1.5Al0.5Ge1.5(PO4)(3) (LAGP) solid electrolyte prepared by a sol gel method is examined. The Li ion conductivity of LAGP increases with calcination temperature. After reaching maximum conductivity at 850 degrees C, the conductivity decreases with increase of the calcination temperature. The calcination holding time also strongly affects Li ion conductivity of LAGP. The conductivity increases with holding time until 12 h and then decreases. It is found that the control of crystallization rate is critical to obtain bulk LAGP with high Li ion conductivity. The highest bulk and total conductivities at 30 degrees C are 9.5 x 10(-4) and 1.8 x 10(-4) S cm(-1), respectively, obtained for the bulk LAGP calcined at 850 degrees C for 12 h. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:8562 / 8567
页数:6
相关论文
共 50 条
[41]   Effect of Li salts on the properties of Li1.5Al0.5Ti1.5(PO4)3 solid electrolytes prepared by the co-precipitation method [J].
Kotobuki, Masashi ;
Koishi, Masaki .
JOURNAL OF ASIAN CERAMIC SOCIETIES, 2019, 7 (04) :426-433
[42]   Preparation of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte via a sol-gel method using various Ti sources [J].
Kotobuki, Masashi ;
Koishi, Masaki .
JOURNAL OF ASIAN CERAMIC SOCIETIES, 2020, 8 (03) :891-897
[43]   The Preparation of Li1.5Al0.5Ge1.5(PO4)3 Glass-Ceramics with Lithium-Ion Conductivity from an Oxalate Precursor [J].
Kunshina, G. B. ;
Bocharova, I. V. .
GLASS PHYSICS AND CHEMISTRY, 2020, 46 (06) :576-583
[44]   Influence of precursor calcination temperature on sintering and conductivity of Li1.5Al0.5Ti1.5(PO4)3 ceramics [J].
Kotobuki, Masashi ;
Koishi, Masaki .
JOURNAL OF ASIAN CERAMIC SOCIETIES, 2019, 7 (01) :69-74
[45]   Compatibility between Li1.5Al0.5Ge1.5(PO4)3-based solid electrolyte and LiNi1/3Co1/3Mn1/3O2 cathode [J].
Pershina, S. V. .
SOLID STATE IONICS, 2025, 427
[46]   Investigation of Zn Doped Li1.5Al0.5-xZnxGe1.5(PO4)3 (x=0, 0.1 & 0.2) as a Solid Electrolyte for Li Ion Batteries [J].
Subash, Sruthy ;
Faizal, Abu ;
Mercy, T. D. ;
Bharathi, K. Kamala .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2024, 13 (07)
[47]   Constructing Effective Interfaces for Li1.5Al0.5Ge1.5(PO4)3 Pellets To Achieve Room-Temperature Hybrid Solid-State Lithium Metal Batteries [J].
Yu, Qipeng ;
Han, Da ;
Lu, Qngwen ;
He, Yan-Bing ;
Li, Song ;
Liu, Qi ;
Han, Cuiping ;
Kang, Feiyu ;
Li, Baohua .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) :9911-9918
[48]   Li1.5Al0.5Ge1.5(PO4)3Ceramic Based Lithium-Sulfur Batteries with High Cycling Stability Enabled by a Dual Confinement Effect for Polysulfides [J].
Wang, Qing ;
Lu, Yang ;
Jin, Jun ;
Chen, Chunhua ;
Wen, Zhaoyin .
CHEMELECTROCHEM, 2020, 7 (19) :4093-4100
[49]   Scalable Li1.5Al0.5Ge1.5(PO4)3 thin membrane prepared by tape-casting for large-scale lithium-air battery application [J].
Zhu, Yaqi ;
Chen, Gongxuan ;
Sun, Jianguo ;
Wang, Jiakai ;
Wu, Tian ;
Dai, Wei ;
Lu, Li .
MATERIALS TECHNOLOGY, 2020, 35 (9-10) :572-579
[50]   Titanium Dioxide Doping toward High-Lithium-Ion-Conducting Li1.5Al0.5Ge1.5(PO4)3 Glass-Ceramics for All-Solid-State Lithium Batteries [J].
Yang, Jing ;
Huang, Zhen ;
Zhang, Peng ;
Liu, Gaozhan ;
Xu, Xiaoxiong ;
Yao, Xiayin .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (10) :7299-7305