Polynomial goal programming and particle swarm optimization for enhanced indexation

被引:9
作者
Kaucic, Massimiliano [1 ]
Barbini, Fabrizio [2 ]
Verdu, Federico Julian Camerota [1 ]
机构
[1] Univ Trieste, Dept Econ Business Math & Stat, Piazzale Europa 1, I-34127 Trieste, Italy
[2] Generali Italia, Chief Investment Officer Dept, Via Marocchesa 14, I-31021 Mogliano Veneto, TV, Italy
关键词
Enhanced indexation; Cardinality; Turnover constraint; Polynomial goal programming; Particle swarm optimization; Constraint handling; PORTFOLIO OPTIMIZATION; TRACKING-ERROR; ALGORITHM; EVOLUTIONARY; INVESTORS; MODEL;
D O I
10.1007/s00500-019-04378-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Enhanced indexation is an investment strategy that aims to generate moderate and consistent excess returns with respect to a tracked benchmark index. In this work, we introduce an optimization approach where the risk of under-performing the benchmark is separated from the potential over-performance, and the Sharpe ratio measures the profitability of the active management. In addition, a cardinality constraint controls the number of active positions in the portfolio, while a turnover threshold limits the transaction costs. We adopt a polynomial goal programming approach to combine these objectives with the investor's preferences. An improved version of the particle swarm optimization algorithm with a novel constraint-handling mechanism is proposed to solve the optimization problem. A numerical example, where the Euro Stoxx 50 Index is used as the benchmark, shows that our method consistently produces larger returns, with reduced costs and risk exposition, than the standard indexing strategies over a 10-year backtesting period.
引用
收藏
页码:8535 / 8551
页数:17
相关论文
共 54 条
[1]   Invasive weed optimization for solving index tracking problems [J].
Affolter, K. ;
Hanne, T. ;
Schweizer, D. ;
Dornberger, R. .
SOFT COMPUTING, 2016, 20 (09) :3393-3401
[2]   An evolutionary heuristic for the index tracking problem [J].
Beasley, JE ;
Meade, N ;
Chang, TJ .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 148 (03) :621-643
[3]  
Benidis K., 2018, FDN TRENDS OPTIMIZAT, V3, P171
[4]   A randomized low latency resource sharing algorithm for Fog Computing [J].
Beraldi, Roberto ;
Mattia, Gabriele Proietti .
2019 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS (DS-RT), 2019, :1-8
[5]   Different approaches to risk estimation in portfolio theory [J].
Biglova, A ;
Ortobelli, S ;
Rachev, S ;
Stoyanov, S .
JOURNAL OF PORTFOLIO MANAGEMENT, 2004, 31 (01) :103-+
[6]   A linear risk-return model for enhanced indexation in portfolio optimization [J].
Bruni, Renato ;
Cesarone, Francesco ;
Scozzari, Andrea ;
Tardella, Fabio .
OR SPECTRUM, 2015, 37 (03) :735-759
[7]   Mixed-integer programming approaches for index tracking and enhanced indexation [J].
Canakgoz, N. A. ;
Beasley, J. E. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 196 (01) :384-399
[8]   A SURVEY ON THE FOUR FAMILIES OF PERFORMANCE MEASURES [J].
Caporin, Massimiliano ;
Jannin, Gregory M. ;
Lisi, Francesco ;
Maillet, Bertrand B. .
JOURNAL OF ECONOMIC SURVEYS, 2014, 28 (05) :917-942
[9]   A mixed-discrete Particle Swarm Optimization algorithm with explicit diversity-preservation [J].
Chowdhury, Souma ;
Tong, Weiyang ;
Messac, Achille ;
Zhang, Jie .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2013, 47 (03) :367-388
[10]  
Coello CAC, 2004, IEEE T EVOLUT COMPUT, V8, P256, DOI [10.1109/TEVC.2004.826067, 10.1109/tevc.2004.826067]