On some advanced type inequalities for Sugeno integral and T-(S-)evaluators

被引:16
作者
Agahi, Hamzeh [2 ]
Mesiar, Radko [3 ,4 ]
Ouyang, Yao [1 ]
机构
[1] Huzhou Teachers Coll, Fac Sci, Huzhou 313000, Zhejiang, Peoples R China
[2] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Stat, Tehran 15914, Iran
[3] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, SK-81368 Bratislava, Slovakia
[4] Acad Sci Czech Republ, Inst Informat Theory & Automat, CR-18208 Prague 8, Czech Republic
关键词
Nonadditive measure; Sugeno integral; Comonotone functions; Chebyshev's inequality; Minkowski's inequality; Holder's inequality; CHEBYSHEV TYPE INEQUALITIES;
D O I
10.1016/j.ins.2011.10.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper strengthened versions of the Minkowski, Chebyshev, Jensen and Holder inequalities for Sugeno integral and T-(S-)evaluators are given. As an application, some equivalent forms and some particular results have been established. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:64 / 75
页数:12
相关论文
共 30 条
[1]   Berwald type inequality for Sugeno integral [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Yao Ouyang ;
Pap, Endre ;
Strboja, Mirjana .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) :4100-4108
[2]  
Agahi H, 2010, KYBERNETIKA, V46, P83
[3]   General Minkowski type inequalities for Sugeno integrals [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Yao Ouyang .
FUZZY SETS AND SYSTEMS, 2010, 161 (05) :708-715
[4]   New general extensions of Chebyshev type inequalities for Sugeno integrals [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Yao Ouyang .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2009, 51 (01) :135-140
[5]  
[Anonymous], 1992, Fuzzy measure theory
[6]   T-evaluators and S-evaluators [J].
Bodjanova, Slavka ;
Kalina, Martin .
FUZZY SETS AND SYSTEMS, 2009, 160 (14) :1965-1983
[7]   Choquet integral based aggregation approach to software development risk assessment [J].
Buyukozkan, Gulcin ;
Ruan, Da .
INFORMATION SCIENCES, 2010, 180 (03) :441-451
[8]   The use of the discrete Sugeno integral in decision-making: A survey [J].
Dubois, D ;
Marichal, JL ;
Prade, H ;
Roubens, M ;
Sabbadin, R .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2001, 9 (05) :539-561
[9]  
Dubois D., 1998, Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference (1998), P121
[10]   A Chebyshev type inequality for fuzzy integrals [J].
Flores-Franulic, A. ;
Roman-Flores, H. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) :1178-1184