Existence of positive solutions for a fractional elliptic problems with the Hardy-Sobolev-Maz'ya potential and critical nonlinearities

被引:1
作者
Cai, Zhipeng [1 ]
Chu, Changmu [1 ]
Lei, Chunyu [1 ]
机构
[1] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2017年
基金
中国国家自然科学基金;
关键词
fractional operator; Hardy-Sobolev-Maz'ya potential; critical nonlinearities; positive solution; MULTIPLICITY; EQUATIONS;
D O I
10.1186/s13661-017-0912-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the study of a fractional elliptic problem with the Hardy-Sobolev-Maz'ya potential and critical nonlinearities. By means of variational methods and suitable technique, a positive solution to this problem is obtained.
引用
收藏
页数:11
相关论文
共 22 条
[1]   The effect of the Hardy potential in some Calderon-Zygmund properties for the fractional Laplacian [J].
Abdellaoui, Boumediene ;
Medina, Maria ;
Peral, Ireneo ;
Primo, Ana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) :8160-8206
[2]   Some remarks on the solvability of non-local elliptic problems with the Hardy potential [J].
Barrios, B. ;
Medina, M. ;
Peral, I. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (04)
[3]   Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent [J].
Bouchekif, M. ;
Matallah, A. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (02) :268-275
[4]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[5]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236
[6]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[7]   Existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and Hardy-Sobolev critical exponents [J].
Ding, Ling ;
Tang, Chun-Lei .
APPLIED MATHEMATICS LETTERS, 2007, 20 (12) :1175-1183
[8]  
Dipierro S., 2016, CALC VAR PARTIAL DIF, V55, P1
[9]  
Fiscella A, 2016, MANUSCRIPTA MATH, P1
[10]   Bifurcation and multiplicity results for critical nonlocal fractional Laplacian problems [J].
Fiscella, Alessio ;
Bisci, Giovanni Molica ;
Servadei, Raffaella .
BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (01) :14-35