Properties of S-tensors

被引:29
作者
Guo, Qi [1 ]
Zheng, Meng-Meng [1 ]
Huang, Zheng-Hai [1 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
S-tensor; semi-positive tensor; tensor complementarity problem; strict feasibility; EIGENVALUES;
D O I
10.1080/03081087.2018.1430737
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Strict feasibility is an important issue in studies on the theory and algorithms of complementarity problems. For the tensor complementarity problem, strict feasibility can be characterized by the S-tensor. In this paper, we discuss properties of S-tensors. We illustrate that principal sub-tensors of an S-tensor are not always an S-tensor. In particular, we propose several necessary and/or sufficient conditions to judge whether a tensor is an S-tensor or not. Moreover, we also discuss relationship among S-tensors and several related tensors.
引用
收藏
页码:685 / 696
页数:12
相关论文
共 26 条
[1]   Global Uniqueness and Solvability for Tensor Complementarity Problems [J].
Bai, Xue-Li ;
Huang, Zheng-Hai ;
Wang, Yong .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (01) :72-84
[2]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[3]   Positive-Definite Tensors to Nonlinear Complementarity Problems [J].
Che, Maolin ;
Qi, Liqun ;
Wei, Yimin .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 168 (02) :475-487
[4]  
Cottle RW, 1992, The linear complementarity problem
[5]  
Ding W, 2015, ARXIV150706731
[6]   M-tensors and nonsingular M-tensors [J].
Ding, Weiyang ;
Qi, Liqun ;
Wei, Yimin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) :3264-3278
[7]  
Eaves BC, 1971, MANAGE SCI, V17, P621
[8]  
Fiedler M, 1962, CZECH MATH J, V12, P163
[9]  
Gowda MS, 2017, PAC J OPTIM, V13, P227
[10]  
Huang Z., 2015, PAC J OPTIM