Enhanced Investigation of CO Methanation over Ni/Al2O3 Catalysts for Synthetic Natural Gas Production

被引:281
作者
Hu, Dacheng [1 ,2 ]
Gao, Jiajian [1 ]
Ping, Yuan [1 ]
Jia, Lihua [2 ]
Gunawan, Poernomo [3 ]
Zhong, Ziyi [3 ]
Xu, Guangwen [1 ]
Gu, Fangna [1 ]
Su, Fabing [1 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[2] Qiqihar Univ, Coll Chem & Chem Engn, Qiqihar 161006, Heilongjiang Pr, Peoples R China
[3] ASTAR, Inst Chem Engn & Sci, Singapore 627833, Singapore
基金
中国博士后科学基金;
关键词
CARBON-MONOXIDE; NI-AL2O3; CATALYSTS; SNG PRODUCTION; NICKEL; HYDROGENATION; DEACTIVATION; SUPPORT; KINETICS; DIOXIDE; ALUMINA;
D O I
10.1021/ie300049f
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
CO methanation reaction over the Ni/Al2O3 catalysts for synthetic natural gas production was systematically investigated by tuning a number of parameters, including using different commercial Al2O3 supports and varying NiO and MgO loading, calcination temperature, space velocity, H-2/CO ratio, reaction pressure, and time, respectively. The catalytic performance was greatly influenced by the above-mentioned parameters. Briefly, a large surface area of the Al2O3 support, a moderate interaction between Ni and the support Al2O3, a proper Ni content (20 wt %), and a relatively low calcination temperature (400 degrees C) promoted the formation of small NiO particles and reducible beta-type NiO species, which led to high catalytic activities and strong resistance to the carbon deposition, while addition of a small amount of MgO (2 wt %) could improve the catalyst stability by reducing the carbon deposition; other optimized conditions that enhanced the catalytic performance included high reaction pressure (3.0 MPa), high H-2/CO ratio (>= 3:1), low space velocity, and addition of quartz sand as the diluting agent in catalyst bed. The best catalyst combination was 20-40 wt % of NiO supported on a commercial Al2O3 (S-4) with addition of 2-4 wt % of MgO, calcined at 400-500 degrees C and run at a reaction pressure of 3.0 MPa. On this catalyst, 100% of CO conversion could be achieved within a wide range of reaction temperature (300-550 degrees C), and the CH4 selectivity increased with increasing temperature and reached 96.5% at a relatively low temperature of 350 degrees C. These results will be very helpful to develop highly efficient Ni-based catalysts for the methanation reaction, to optimize the reaction process, and to better understand the above reaction.
引用
收藏
页码:4875 / 4886
页数:12
相关论文
共 71 条
[1]   METHANATION OVER TRANSITION-METAL CATALYSTS .4. CO/AL2O3 - RATE BEHAVIOR AND KINETIC MODELING [J].
AGRAWAL, PK ;
KATZER, JR ;
MANOGUE, WH .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1982, 21 (04) :385-390
[2]   THERMODYNAMICS OF THE HYDROGENATION OF OXIDES OF CARBON [J].
ANDERSON, RB .
JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (20) :4806-4810
[3]  
ANDERSON RB, 1976, CAN J CHEM ENG, V54, P590
[4]   EFFECTS OF CARBON DEPOSITS ON THE SPECIFIC ACTIVITY OF NICKEL AND NICKEL BIMETALLIC CATALYSTS [J].
BARTHOLOMEW, CH ;
WEATHERBEE, GD ;
JARVI, GA .
CHEMICAL ENGINEERING COMMUNICATIONS, 1980, 5 (1-4) :125-134
[5]   Mechanisms of catalyst deactivation [J].
Bartholomew, CH .
APPLIED CATALYSIS A-GENERAL, 2001, 212 (1-2) :17-60
[6]   CARBON DEPOSITION IN STEAM REFORMING AND METHANATION [J].
BARTHOLOMEW, CH .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1982, 24 (01) :67-112
[7]   SUPPORT AND CRYSTALLITE SIZE EFFECTS IN CO HYDROGENATION ON NICKEL [J].
BARTHOLOMEW, CH ;
PANNELL, RB ;
BUTLER, JL .
JOURNAL OF CATALYSIS, 1980, 65 (02) :335-347
[8]   Tailored porous materials [J].
Barton, TJ ;
Bull, LM ;
Klemperer, WG ;
Loy, DA ;
McEnaney, B ;
Misono, M ;
Monson, PA ;
Pez, G ;
Scherer, GW ;
Vartuli, JC ;
Yaghi, OM .
CHEMISTRY OF MATERIALS, 1999, 11 (10) :2633-2656
[9]   ENHANCED ACTIVITY OF PD/TIO2 CATALYSTS FOR THE CO-H-2 REACTION IN THE ABSENCE OF STRONG METAL-SUPPORT INTERACTIONS (SMSI) [J].
BRACEY, JD ;
BURCH, R .
JOURNAL OF CATALYSIS, 1984, 86 (02) :384-391
[10]   Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts: Effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier [J].
Cai, Mengdie ;
Wen, Jie ;
Chu, Wei ;
Cheng, Xueqing ;
Li, Zejun .
JOURNAL OF NATURAL GAS CHEMISTRY, 2011, 20 (03) :318-324