Preparation and Fuel Cell Performance of Catalyst Layers Using Sulfonated Polyimide Ionomers

被引:33
作者
Omata, Takuya [2 ]
Tanaka, Manabu [1 ]
Miyatake, Kenji [1 ,3 ]
Uchida, Makoto [1 ]
Uchida, Hiroyuki [1 ,3 ]
Watanabe, Masahiro [1 ]
机构
[1] Univ Yamanashi, Fuel Cell Nanomat Ctr, Kofu, Yamanashi 4008510, Japan
[2] Univ Yamanashi, Interdisciplinary Grad Sch Med & Engn, Kofu, Yamanashi 4008510, Japan
[3] Univ Yamanashi, Clean Energy Res Ctr, Kofu, Yamanashi 4008510, Japan
关键词
fuel cells; catalyst layers; hydrocarbon ionomers; sulfonated polyimides; GAS-DIFFUSION ELECTRODES; PROTON-EXCHANGE MEMBRANES; ETHER KETONE); BINDER; POLYMERIZATION; COPOLYMERS; OPERATION; PLATINUM; METHANOL; PEFCS;
D O I
10.1021/am201360j
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sulfonated polyimide (SPI-8) ionomers were used as binders in the catalyst layers, and their fuel cell performance was evaluated. SPI-8 ionomers functioned well in the anode with only minor overpotential even at low humidity (50% relative humidity (RH)). In contrast, the cathode performance was significantly dependent on the content and molecular weight of the ionomers and humidity of the supplied gases. Higher molecular weight of the ionomer caused larger potential drop at high current density at 80 and 100% RH since oxygen supply and/or water discharge became insufficient due to higher water uptake (swelling) of the ionomer. Similar results were obtained at higher ionomer content, because of the increase of thickness in the catalyst layer. The mass transport was improved with decreasing humidity, however, proton conductivity became lower. While the maximum values of j(@0.70) (v) for all membrane electrode assemblies (MBAs) were ca. 0.35 A/cm(2), each electrode could have the different appropriate operating conditions The results suggest that the parameters such as oxygen supply, proton conductivity, and water uptake and discharge need to be carefully optimized in, the catalyst layers for achieving reasonable cathode performance with hydrocarbon ionomers.
引用
收藏
页码:730 / 737
页数:8
相关论文
共 32 条
[1]   Aliphatic/aromatic polyimide lonomers as a proton conductive membrane for fuel cell applications [J].
Asano, N ;
Aoki, M ;
Suzuki, S ;
Miyatake, K ;
Uchida, H ;
Watanabe, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1762-1769
[2]   Sulfonated Block Poly(arylene ether sulfone) Membranes for Fuel Cell Applications via Oligomeric Sulfonation [J].
Bae, Byungchan ;
Hoshi, Takayuki ;
Miyatake, Kenji ;
Watanabe, Masahiro .
MACROMOLECULES, 2011, 44 (10) :3884-3892
[3]   Synthesis and Properties of Sulfonated Block Copolymers Having Fluorenyl Groups for Fuel-Cell Applications [J].
Bae, Byungchan ;
Miyatake, Kenji ;
Watanabe, Masahiro .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (06) :1279-1286
[4]   Gas diffusion electrodes containing sulfonated polyether ionomers for PEFCs [J].
Beleke, Alexis B. ;
Miyatake, Kenji ;
Uchida, Hiroyuki ;
Watanabe, Masahiro .
ELECTROCHIMICA ACTA, 2007, 53 (04) :1972-1978
[5]   Properties of gas diffusion electrodes containing sulfonated poly( ether ether ketone) [J].
Easton, EB ;
Astill, TD ;
Holdcroft, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :A752-A758
[6]   Ionomeric poly(phenylene) prepared by diels-alder polymerization: Synthesis and physical properties of a novel polyelectrolyte [J].
Fujimoto, CH ;
Hickner, MA ;
Cornelius, CJ ;
Loy, DA .
MACROMOLECULES, 2005, 38 (12) :5010-5016
[7]   Alternative polymer systems for proton exchange membranes (PEMs) [J].
Hickner, MA ;
Ghassemi, H ;
Kim, YS ;
Einsla, BR ;
McGrath, JE .
CHEMICAL REVIEWS, 2004, 104 (10) :4587-4611
[8]   Gas diffusion electrodes for polymer electrolyte fuel cell using sulfonated polyimide [J].
Higuchi, Eiji ;
Okamoto, Kenichi ;
Miyatake, Kenji ;
Uchida, Hiroyuki ;
Watanabe, Masahiro .
RESEARCH ON CHEMICAL INTERMEDIATES, 2006, 32 (5-6) :533-542
[9]   Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications [J].
Jones, DJ ;
Rozière, J .
JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) :41-58
[10]   Durability of a novel sulfonated polyimide membrane in polymer electrolyte fuel cell operation [J].
Kabasawa, Akihiro ;
Saito, Jumpei ;
Yano, Hiroshi ;
Miyatake, Kenji ;
Uchida, Hiroyuki ;
Watanabe, Masahiro .
ELECTROCHIMICA ACTA, 2009, 54 (03) :1076-1082