On the Skitovich-Darmois Theorem for the Group of p-Adic Numbers

被引:0
|
作者
Feldman, Gennadiy [1 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, Kharkov, Ukraine
关键词
Group of p-adic numbers; Characterization theorem;
D O I
10.1007/s10959-013-0525-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let be the group of -adic numbers, and let and be independent random variables with values in and distributions and . Let be topological automorphisms of . Assuming that the linear forms and are independent, we describe possible distributions and depending on the automorphisms . This theorem is an analogue for the group of the well-known Skitovich-Darmois theorem, where a Gaussian distribution on the real line is characterized by the independence of two linear forms.
引用
收藏
页码:539 / 549
页数:11
相关论文
共 50 条
  • [41] p-adic analogues of the law of large numbers and the central limit theorem
    Khrennikov, A
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (01): : 61 - 77
  • [42] AN INDUCTION THEOREM FOR UNITS OF P-ADIC GROUP-RINGS
    BHANDARI, AK
    SEHGAL, SK
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1991, 34 (01): : 31 - 35
  • [43] Simultaneous approximation problems of p-adic numbers and p-adic knapsack cryptosystems - Alice in p-adic numberland
    Inoue H.
    Kamada S.
    Naito K.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2016, 8 (4) : 312 - 324
  • [44] Geometry of P-adic numbers.
    Monna, AF
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1942, 45 (6/10): : 981 - 986
  • [45] Bernoulli numbers in p-adic analysis
    Kim, MS
    Son, JW
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) : 289 - 297
  • [46] P-ADIC ANALYSIS AND BERNOULLI NUMBERS
    BARSKY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (16): : 1069 - 1072
  • [47] Relaxed algorithms for p-adic numbers
    Berthomieu, Jeremy
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (03): : 541 - 577
  • [48] Algebraic independence of p-adic numbers
    Nesterenko, Yu. V.
    IZVESTIYA MATHEMATICS, 2008, 72 (03) : 565 - 579
  • [49] On p-adic valuations of Stirling numbers
    Miska, Piotr
    ACTA ARITHMETICA, 2018, 186 (04) : 337 - 348
  • [50] The p-adic Valuation of the ASM Numbers
    Beyerstedt, Erin
    Moll, Victor H.
    Sun, Xinyu
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (08)