Limitations of pullback attractors for processes

被引:23
作者
Kloeden, Peter E. [1 ]
Poetzsche, Christian [2 ]
Rasmussen, Martin [3 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[2] Tech Univ Munich, Zentrum Math, D-85748 Garching, Germany
[3] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
pullback attractor; two-parameter semigroup; skew product flow; GENERAL CONTROL-SYSTEMS;
D O I
10.1080/10236198.2011.578070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Pullback convergence has been investigated in numerous papers as an appropriate attraction concept for nonautonomous problems. However, in this paper, it is illustrated through some simple examples that pullback attractors do not give a complete picture of asymptotic behaviour when the nonautonomous dynamical systems that they generate are formulated as processes. It is then shown how the problem can be resolved using a skew product formulation of the nonautonomous dynamical systems when the state space of the driving system is compact.
引用
收藏
页码:693 / 701
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 2010, Asymptotic Behavior of Dissipative Systems
[2]  
Kato J., 1996, STABILITY MOTION NON
[3]   Dynamics of a class of ODEs more general than almost periodic [J].
Kloeden, P. E. ;
Rodrigues, H. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) :2695-2719
[4]  
Kloeden P.E., 2011, MATH SURVEY IN PRESS
[5]   Pullback attractors in nonautonomous difference equations [J].
Kloeden, PE .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2000, 6 (01) :33-52
[6]   EVENTUAL STABILITY IN GENERAL CONTROL-SYSTEMS [J].
KLOEDEN, PE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 19 (01) :106-124
[7]   ASYMPTOTIC INVARIANCE AND LIMIT SETS OF GENERAL CONTROL-SYSTEMS [J].
KLOEDEN, PE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 19 (01) :91-105
[8]   Geometric Theory of Discrete Nonautonomous Dynamical Systems [J].
Poetzsche, Christian .
GEOMETRIC THEORY OF DISCRETE NONAUTONOMOUS DYNAMICAL SYSTEMS, 2010, 2002 :1-+
[9]  
Rasmussen M, 2007, LECT NOTES MATH, V1907, P1, DOI 10.1007/978-3-540-71225-1
[10]   Morse decompositions of nonautonomous dynamical systems [J].
Rasmussen, Martin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (10) :5091-5115