Supercritical Conformal Metrics on Surfaces with Conical Singularities

被引:71
作者
Bartolucci, Daniele [2 ]
De Marchis, Francesca [1 ]
Malchiodi, Andrea [1 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Univ Roma Tor Vergata, I-00133 Rome, Italy
关键词
MEAN-FIELD EQUATIONS; GAUSSIAN CURVATURE; LIOUVILLE TYPE; INEQUALITY; EXISTENCE; DEFORMATION; TRUDINGER; BLOW;
D O I
10.1093/imrn/rnq285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the problem of prescribing the Gaussian curvature on surfaces with conical singularities in supercritical regimes. Using a Morse-theoretical approach, we prove a general existence theorem on surfaces with positive genus, with a generic multiplicity result.
引用
收藏
页码:5625 / 5643
页数:19
相关论文
共 44 条
[1]  
[Anonymous], 2008, ADV DIFFER EQU-NY
[2]  
AUBIN T, 1982, MONGEAMPERE EQUATION
[3]   Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory [J].
Bartolucci, D ;
Thrantello, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 229 (01) :3-47
[4]  
Berger M., 1971, J DIFFER GEOM, V5, P325
[5]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[6]   A SPECIAL-CLASS OF STATIONARY FLOWS FOR 2-DIMENSIONAL EULER EQUATIONS - A STATISTICAL-MECHANICS DESCRIPTION .2. [J].
CAGLIOTI, E ;
LIONS, PL ;
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (02) :229-260
[7]  
CHANG KC, 1993, PNLDE 6
[8]   The inequality of Moser and Trudinger and applications to conformal geometry [J].
Chang, SYA ;
Yang, PC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (08) :1135-1150
[9]   PRESCRIBING GAUSSIAN CURVATURE ON S2 [J].
CHANG, SYA ;
YANG, PC .
ACTA MATHEMATICA, 1987, 159 (3-4) :215-259
[10]  
CHANG SYA, 1988, J DIFFER GEOM, V27, P259