Minimal W-Superalgebras and the Modular Representations of Basic Lie Superalgebras

被引:6
作者
Zeng, Yang [1 ]
Shu, Bin [2 ]
机构
[1] Nanjing Audit Univ, Sch Math & Stat, Nanjing 211815, Jiangsu, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
关键词
Finite W-(super)algebras; basic (classical) Lie superalgebras; minimal nilpotent elements; modular representations of Lie (super)algebras; (super) Kac-Weisfeiler conjecture (property) for modular Lie (super)algebras; QUANTUM REDUCTION; FINITE; ALGEBRAS; SLICES; IDEALS;
D O I
10.4171/PRIMS/55-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g = g((0) over bar) + g((1) over bar) be a basic Lie superalgebra over C, and e a minimal nilpotent element in g((0) over bar). Set W-x' to be the refined W-superalgebra associated with the pair (g, e), which is called a minimal W-superalgebra. In this paper we present a set of explicit generators of minimal W-superalgebras and the commutators between them. By virtue of this, we show that over an algebraically closed field K of characteristic p >> 0, the lower bounds of dimensions in the modular representations of basic Lie superalgebras with minimal nilpotent p-characters are attainable. Such lower bounds are indicated in [33] as the super Kac-Weisfeiler property.
引用
收藏
页码:123 / 188
页数:66
相关论文
共 39 条
[1]   Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moeseneder ;
Papi, Paolo ;
Perse, Ozren .
JOURNAL OF ALGEBRA, 2018, 500 :117-152
[2]  
[Anonymous], 1978, Lect. Notes Math.
[3]   JOSEPH IDEALS AND LISSE MINIMAL W-ALGEBRAS [J].
Arakawa, Tomoyuki ;
Moreau, Anne .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2018, 17 (02) :397-417
[4]   Principal W-algebras for GL (m|n) [J].
Brown, Jonathan ;
Brundan, Jonathan ;
Goodwin, Simon M. .
ALGEBRA & NUMBER THEORY, 2013, 7 (08) :1849-1882
[5]  
Brundan J., 2017, ARXIV161208152
[6]  
Cheng S., 2012, GRAD STUD MATH, V144
[7]   Finite vs affine W-algebras [J].
De Sole, Alberto ;
Kac, Victor G. .
JAPANESE JOURNAL OF MATHEMATICS, 2006, 1 (01) :137-261
[8]  
De Sole A, 2014, COMMUN MATH PHYS, V331, P623, DOI 10.1007/s00220-014-2049-2
[9]  
Fioresi R, 2012, MEM AM MATH SOC, V215, P1
[10]  
Gan WL, 2002, INT MATH RES NOTICES, V2002, P243