Stabilization of a solution of the first mixed problem for a quasi-elliptic evolution equation

被引:11
作者
Kozhevnikova, LM [1 ]
机构
[1] Sterlitamak State Pedagog Acad, Sterlitamak, Russia
关键词
D O I
10.1070/SM2005v196n07ABEH000946
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a cylindrical domain D = (0, infinity) x Omega, where Omega is an unbounded subdomain of Rn+1, one considers the first mixed problem for a higher order equation [GRAPHIC] with homogeneous boundary conditions and compactly supported initial function. A new method of obtaining an tipper estimate of the L-2-norm vertical bar vertical bar u(t)vertical bar vertical bar of the solution of this problem is put forward, which works in a broad class of domains and equations. In particular, in domains {(x, y) epsilon Rn+1 : vertical bar y(1)vertical bar < x(a)}, 0 < a < q/l, for the operator L with symbol satisfying a certain condition this estimate takes the following form: vertical bar vertical bar u(l)vertical bar vertical bar <= M exp(-kappa 2t(b))vertical bar vertical bar phi, b = q - la/ q - la + 2laq The estimate is shown to be sharp in a broad class of unbounded domains for q = k = l = m = 1, that is, for second-order parabolic equations.
引用
收藏
页码:999 / 1032
页数:34
相关论文
共 14 条
[1]  
BIKKULOV IM, 2004, MAT SBORNIK, V195, P115
[2]  
GUSHCHIN AK, 1976, MAT SBORNIK, V101, P459
[3]  
GUSHCHIN AK, 1973, T MAT I STEKLOVA, V126, P5
[4]  
KHISAMUTDINOVA NA, 2003, MAT SBORNIK, V194, P83
[5]  
KONDRATEV VA, 1970, MAT SBORNIK, V81, P398
[6]  
Kozhevnikova L. M., 2000, MAT SBORNIK, V191, P91
[7]  
Ladyzhenskaya O., 1968, TRANSL MATH MONOGRAP, V23
[8]  
LEZHNEV AV, 1986, MAT SBORNIK, V129, P186
[10]  
Mukminov F. Kh, 1987, DIFF URAVN, V23, P1172