A residual based error estimator using radial basis functions

被引:23
作者
Kee, Bernard B. T. [1 ]
Liu, G. R. [1 ,2 ]
Zhang, G. Y. [1 ,2 ]
Lu, C. [3 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Ctr Adv Computat Engn Sci, Singapore 117576, Singapore
[2] Natl Univ Singapore, SMA, Singapore 117576, Singapore
[3] IHPC, Singapore 117528, Singapore
关键词
error estimator; radial basis functions; adaptive; residual; finite element method; meshfree method;
D O I
10.1016/j.finel.2008.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a novel residual based error estimator using radial basis functions (RBFs) is proposed. The error estimator evaluates the residual in the strong-form governing equation in the local domain through direct integration. Due to the higher order continuous feature of the RBFs, the higher derivatives of the field function in the strong-form governing equation can be obtained using RBFs. The numerical examples show that the new residual based error estimator is simple, versatile robust and yet effective in the adaptive analyses. It is not only suitable for adaptive analysis that uses numerical method formulated based on mesh, e.g. finite element method, but also meshfree methods where the conventional residual based and recovery based error estimator cannot be used. Furthermore the present error estimator is also feasible for numerical method that is formulated based on both strong and weak formulation in the adaptive analyses. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:631 / 645
页数:15
相关论文
共 27 条
[1]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[2]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[3]   ANALYSIS OF THE EFFICIENCY OF AN A POSTERIORI ERROR ESTIMATOR FOR LINEAR TRIANGULAR FINITE-ELEMENTS [J].
BABUSKA, I ;
DURAN, R ;
RODRIGUEZ, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (04) :947-964
[4]  
BERNARD B, 2007, COMPUT MECH, V40, P837
[5]   SUPERCONVERGENT PATCH RECOVERY WITH EQUILIBRIUM AND CONJOINT INTERPOLANT ENHANCEMENTS [J].
BLACKER, T ;
BELYTSCHKO, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (03) :517-536
[6]   SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS [J].
FRANKE, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :181-200
[9]   Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations [J].
Kansa, EJ ;
Hon, YC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (7-8) :123-137
[10]   A LINEARLY CONFORMING POINT INTERPOLATION METHOD (LC-PIM) FOR 2D SOLID MECHANICS PROBLEMS [J].
Liu, G. R. ;
Zhang, G. Y. ;
Dai, K. Y. ;
Wang, Y. Y. ;
Zhong, Z. H. ;
Li, G. Y. ;
Han, X. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2005, 2 (04) :645-665