Over-expression of CarMT gene modulates the physiological performance and antioxidant defense system to provide tolerance against drought stress in Arabidopsis thaliana L

被引:39
|
作者
Dubey, Arvind Kumar [1 ,2 ]
Kumar, Navin [1 ]
Kumar, Anil [1 ,2 ]
Ansari, Mohd Akram [1 ,2 ]
Ranjan, Ruma [1 ]
Gautam, Ambedkar [1 ]
Meenakshi [1 ,2 ]
Sahu, Nayan [3 ]
Pandey, Vivek [1 ]
Behera, Soumit Kumar [1 ]
Mallick, Shekhar [1 ]
Pande, Veena [2 ]
Sanyal, Indraneel [1 ]
机构
[1] CSIR Natl Bot Res Inst, Lucknow, Uttar Pradesh, India
[2] Kumaun Univ, Dept Biotechnol, Bhimtal Campus, Naini Tal, India
[3] Indira Gandhi Natl Tribal Univ, Dept Bot, Amarkantak, Madhya Pradesh, India
关键词
Arabidopsis; Chickpea; Drought; Metallothionein; Physiological performance; ROS; METALLOTHIONEIN-LIKE GENE; WATER-USE EFFICIENCY; TYPE-2; METALLOTHIONEIN; LIPID-PEROXIDATION; OXIDATIVE STRESS; HIGH-TEMPERATURE; FREE PROLINE; RICE; ACCUMULATION; HOMEOSTASIS;
D O I
10.1016/j.ecoenv.2018.12.050
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drought is one of the major abiotic stresses which negatively affect plant growth and crop yield. Metallothionein (MTs) is a low molecular weight protein, mainly involved in metal homeostasis, while, its role in drought stress is still to be largely explored. The present study was aimed to investigate the role of MT gene against drought stress. The chickpea MT based on its up-regulation under drought stress was overexpressed in Arabidopsis thaliana to explore its role in mitigation of drought stress. The total transcript of MT gene was up to 30 fold higher in transgenic lines. Arabidopsis plants transformed with MT gene showed longer roots, better efficiency of survival and germination, larger siliques and higher biomass compared to WT. The physiological variables (A, WUE, G, E, qP and ETR) of WT plants were reduced during drought stress which recovered in transgenic Arabidopsis lines. The enzymatic and non-enzymatic antioxidant (APX, GPX, POD, GR, GRX, GST, CAT, MDHAR, ASc and GSH) levels were also enhanced in transgenic lines to provide tolerance. Simultaneously, drought responsive amino acids, i.e. proline and cysteine contents were higher in transgenic lines. Overall, the results suggest that MT gene is actively involved in the mitigation of drought stress and could be the choice for genetic engineering strategy to overcome drought stress.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 50 条
  • [1] Over-expression of Arabidopsis ORANGE gene enhances drought stress tolerance through ABA-dependent pathway in Arabidopsis thaliana
    Shan, Yong-Jie
    Li, Dan
    Cao, Jing-Jing
    Zhang, Li
    Han, Li-Quan
    Zhang, Mei-Ping
    Shen, Zhen-Guo
    PLANT GROWTH REGULATION, 2022, 96 (01) : 91 - 101
  • [2] Over-expression of Arabidopsis ORANGE gene enhances drought stress tolerance through ABA-dependent pathway in Arabidopsis thaliana
    Yong-Jie Shan
    Dan Li
    Jing-Jing Cao
    Li Zhang
    Li-Quan Han
    Mei-Ping Zhang
    Zhen-Guo Shen
    Plant Growth Regulation, 2022, 96 : 91 - 101
  • [3] Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco
    Qing Zhao
    Gang Wang
    Jing Ji
    Chao Jin
    Weidang Wu
    Jia Zhao
    Journal of Plant Biochemistry and Biotechnology, 2014, 23 : 190 - 198
  • [4] Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco
    Zhao, Qing
    Wang, Gang
    Ji, Jing
    Jin, Chao
    Wu, Weidang
    Zhao, Jia
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 23 (02) : 190 - 198
  • [5] Over-expression of a grape WRKY transcription factor gene, VlWRKY48, in Arabidopsis thaliana increases disease resistance and drought stress tolerance
    Jiao Zhao
    Xiuming Zhang
    Rongrong Guo
    Yaqiong Wang
    Chunlei Guo
    Zhi Li
    Zhiping Chen
    Hua Gao
    Xiping Wang
    Plant Cell, Tissue and Organ Culture (PCTOC), 2018, 132 : 359 - 370
  • [6] Over-expression of a grape WRKY transcription factor gene, VlWRKY48, in Arabidopsis thaliana increases disease resistance and drought stress tolerance
    Zhao, Jiao
    Zhang, Xiuming
    Guo, Rongrong
    Wang, Yaqiong
    Guo, Chunlei
    Li, Zhi
    Chen, Zhiping
    Gao, Hua
    Wang, Xiping
    PLANT CELL TISSUE AND ORGAN CULTURE, 2018, 132 (02) : 359 - 370
  • [7] Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice
    Wu, LQ
    Fan, ZM
    Guo, L
    Li, YQ
    Zhang, WJ
    Qu, LJ
    Chen, ZL
    CHINESE SCIENCE BULLETIN, 2003, 48 (23): : 2594 - 2600
  • [8] Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana
    Dong, Chun-Hai
    Pei, Haixia
    JOURNAL OF PLANT BIOLOGY, 2014, 57 (04) : 209 - 217
  • [9] Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana
    Chun-Hai Dong
    Haixia Pei
    Journal of Plant Biology, 2014, 57 : 209 - 217
  • [10] Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.)
    Zheng, Guangshun
    Fan, Cunying
    Di, Shaokang
    Wang, Xuemin
    Xiang, Chengbin
    Pang, Yongzhen
    FRONTIERS IN PLANT SCIENCE, 2017, 8