Optical vortex detector as a basis for a data transfer system: Operational principle, model, and simulation of the influence of turbulence and noise

被引:8
作者
Aksenov, Valerii P. [2 ]
Izmailov, Igor V. [1 ]
Kanev, Feodor Yu. [2 ]
Poizner, Boris N. [1 ]
机构
[1] Tomsk State Univ, Dept Radiophys, Tomsk 634050, Russia
[2] Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, Tomsk 635055, Russia
基金
俄罗斯基础研究基金会;
关键词
Optical vortex detector; Data transfer; Rozhdestvenskii interferometer; Topological charge; Atmospheric turbulence; WAVE-FRONT; PHASE SINGULARITIES; LIGHT; RECONSTRUCTION; BEAMS;
D O I
10.1016/j.optcom.2011.10.060
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The principle of determining the topological charge of an optical vortex is suggested based on measuring the light field intensity and designing the corresponding detector. A mathematical model of the performance of the detector of topological vortex charge is presented. Results of numerical experiments imitating the vortex recognition in the presence of turbulence or (amplitude or phase) noise in registered radiation as well as of the displacement of the optical beam source and detector axes are presented. Principles are formulated of designing the position finder for an optical vortex (that is, the detector of vortex coordinates) that allows us to consider its realization in the form of mathematical and numerical model. Conditions of reliable operation of the vortex detector and singular optical communication line constructed on its basis are estimated. Dependencies of the probability of error in data transfer on the turbulence intensity, photodetector noise amplitude, and displacement of the optical axes are investigated for different coding algorithms (absolute and differential with fixed or adaptive threshold). The data of modeling confirm the results of analytical calculations. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:905 / 928
页数:24
相关论文
共 47 条
[1]   Algorithms for the reconstruction of the singular wave front of laser radiation: analysis and improvement of accuracy [J].
Aksenov, V. P. ;
Izmailov, I. V. ;
Kanev, F. Yu. ;
Starikov, F. A. .
QUANTUM ELECTRONICS, 2008, 38 (07) :673-677
[2]  
[Аксенов Валерий Петрович Aksenov V.p.], 2010, [Оптика атмосферы и океана, Optika atmosfery i okeana], V23, P1036
[3]  
[Аксенов Валерий Петрович Aksenov V.p.], 2010, [Оптика атмосферы и океана, Optika atmosfery i okeana], V23, P1132
[4]  
Aksenov V.P., 1999, OPTICS ATMOSPHERE OC, V12, P952
[5]  
Aksenov V.P., 2005, P SOC PHOTO-OPT INS, V5894, P68
[6]  
Aksenov V.P., 2009, ATM PHYS MAT 16 INT, P166
[7]   Performance of a wavefront sensor in the presence of singular points [J].
Aksenov, Valerii ;
Izmailov, Igor ;
Kanev, Feodor ;
Starikov, Feodor .
SPECKLE06: SPECKLES, FROM GRAINS TO FLOWERS, 2006, 6341
[8]   Algorithms of a singular wavefront reconstruction - art. no. 60181B [J].
Aksenov, Valerii P. ;
Izmailov, Igor V. ;
Kanev, Feodor Yu. .
5th International Workshop on Adaptive Optics for Industry and Medicine, 2005, 6018 :B181-B181
[9]   Wave and ray spatial dynamics of the light field in the generation, evolution, and annihilation of phase dislocations [J].
Aksenov, VP ;
Izmailov, IV ;
Poizner, BN ;
Tikhomirova, OV .
OPTICS AND SPECTROSCOPY, 2002, 92 (03) :409-418
[10]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189