Practical aspects of diffractive imaging using an atomic-scale coherent electron probe

被引:26
作者
Chen, Z. [1 ]
Weyland, M. [2 ,3 ]
Ercius, P. [4 ]
Ciston, J. [4 ]
Zheng, C. [1 ,5 ]
Fuhrer, M. S. [1 ]
D'Alfonso, A. J. [6 ]
Allen, L. J. [6 ]
Findlay, S. D. [1 ]
机构
[1] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[2] Monash Univ, Monash Ctr Elect Microscopy, Clayton, Vic 3800, Australia
[3] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[4] Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Elect Microscopy, Berkeley, CA 94720 USA
[5] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
[6] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Diffractive imaging; Convergent beam electron diffraction; Differential phase contrast; Phase reconstruction; DETECTORS; IMAGES; MICROSCOPY; FIELDS;
D O I
10.1016/j.ultramic.2016.06.009
中图分类号
TH742 [显微镜];
学科分类号
摘要
Four-dimensional scanning transmission electron microscopy (4D-STEM) is a technique where a full two-dimensional convergent beam electron diffraction (CBED) pattern is acquired at every STEM pixel scanned. Capturing the full diffraction pattern provides a rich dataset that potentially contains more information about the specimen than is contained in conventional imaging modes using conventional integrating detectors. Using 4D datasets in STEM from two specimens, monolayer MoS2 and bulk SrTiO3, we demonstrate multiple STEM imaging modes on a quantitative absolute intensity scale, including phase reconstruction of the transmission function via differential phase contrast imaging. Practical issues about sampling (i.e. number of detector pixels), signal-to-noise enhancement and data reduction of large 4D-STEM datasets are emphasized. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 121
页数:15
相关论文
共 47 条
[1]   Modelling the inelastic scattering of fast electrons [J].
Allen, L. J. ;
D'Alfonso, A. J. ;
Findlay, S. D. .
ULTRAMICROSCOPY, 2015, 151 :11-22
[2]   Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets [J].
Belianinov, Alex ;
Vasudevan, Rama ;
Strelcov, Evgheni ;
Steed, Chad ;
Yang, Sang Mo ;
Tselev, Alexander ;
Jesse, Stephen ;
Biegalski, Michael ;
Shipman, Galen ;
Symons, Christopher ;
Borisevich, Albina ;
Archibald, Rick ;
Kalinin, Sergei .
ADVANCED STRUCTURAL AND CHEMICAL IMAGING, 2015, 1
[3]   Structure retrieval with fast electrons using segmented detectors [J].
Brown, H. G. ;
D'Alfonso, A. J. ;
Chen, Z. ;
Morgan, A. J. ;
Weyland, M. ;
Zheng, C. ;
Fuhrer, M. S. ;
Findlay, S. D. ;
Allen, L. J. .
PHYSICAL REVIEW B, 2016, 93 (13)
[4]  
Burger W., 2009, Digital image processing: an algorithmic introduction using Java
[5]   SCREE TEST FOR NUMBER OF FACTORS [J].
CATTELL, RB .
MULTIVARIATE BEHAVIORAL RESEARCH, 1966, 1 (02) :245-276
[6]   DIRECT DETERMINATION OF MAGNETIC DOMAIN-WALL PROFILES BY DIFFERENTIAL PHASE-CONTRAST ELECTRON-MICROSCOPY [J].
CHAPMAN, JN ;
BATSON, PE ;
WADDELL, EM ;
FERRIER, RP .
ULTRAMICROSCOPY, 1978, 3 (02) :203-214
[7]   Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy [J].
Chen, Z. ;
D'Alfonso, A. J. ;
Weyland, M. ;
Taplin, D. J. ;
Allen, L. J. ;
Findlay, S. D. .
ULTRAMICROSCOPY, 2015, 157 :21-26
[8]   Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons [J].
Close, R. ;
Chen, Z. ;
Shibata, N. ;
Findlay, S. D. .
ULTRAMICROSCOPY, 2015, 159 :124-137
[9]   Deterministic electron ptychography at atomic resolution [J].
D'Alfonso, A. J. ;
Morgan, A. J. ;
Yan, A. W. C. ;
Wang, P. ;
Sawada, H. ;
Kirkland, A. I. ;
Allen, L. J. .
PHYSICAL REVIEW B, 2014, 89 (06)
[10]   Sub-0.1 nm-resolution quantitative scanning transmission electron microscopy without adjustable parameters [J].
Dwyer, C. ;
Maunders, C. ;
Zheng, C. L. ;
Weyland, M. ;
Tiemeijer, P. C. ;
Etheridge, J. .
APPLIED PHYSICS LETTERS, 2012, 100 (19)