Practical aspects of diffractive imaging using an atomic-scale coherent electron probe

被引:26
|
作者
Chen, Z. [1 ]
Weyland, M. [2 ,3 ]
Ercius, P. [4 ]
Ciston, J. [4 ]
Zheng, C. [1 ,5 ]
Fuhrer, M. S. [1 ]
D'Alfonso, A. J. [6 ]
Allen, L. J. [6 ]
Findlay, S. D. [1 ]
机构
[1] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[2] Monash Univ, Monash Ctr Elect Microscopy, Clayton, Vic 3800, Australia
[3] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[4] Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Elect Microscopy, Berkeley, CA 94720 USA
[5] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
[6] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Diffractive imaging; Convergent beam electron diffraction; Differential phase contrast; Phase reconstruction; DETECTORS; IMAGES; MICROSCOPY; FIELDS;
D O I
10.1016/j.ultramic.2016.06.009
中图分类号
TH742 [显微镜];
学科分类号
摘要
Four-dimensional scanning transmission electron microscopy (4D-STEM) is a technique where a full two-dimensional convergent beam electron diffraction (CBED) pattern is acquired at every STEM pixel scanned. Capturing the full diffraction pattern provides a rich dataset that potentially contains more information about the specimen than is contained in conventional imaging modes using conventional integrating detectors. Using 4D datasets in STEM from two specimens, monolayer MoS2 and bulk SrTiO3, we demonstrate multiple STEM imaging modes on a quantitative absolute intensity scale, including phase reconstruction of the transmission function via differential phase contrast imaging. Practical issues about sampling (i.e. number of detector pixels), signal-to-noise enhancement and data reduction of large 4D-STEM datasets are emphasized. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 121
页数:15
相关论文
共 50 条
  • [1] Secondary electron imaging at atomic resolution using a focused coherent electron probe
    Brown, H. G.
    D'Alfonso, A. J.
    Allen, L. J.
    PHYSICAL REVIEW B, 2013, 87 (05)
  • [2] Probe retrieval in ptychographic coherent diffractive imaging
    Thibault, Pierre
    Dierolf, Martin
    Bunk, Oliver
    Menzel, Andreas
    Pfeiffer, Franz
    ULTRAMICROSCOPY, 2009, 109 (04) : 338 - 343
  • [3] Phase imaging and atomic-resolution imaging by electron diffractive imaging
    Yamasaki, Jun
    Morishita, Shigeyuki
    Shimaoka, Yuki
    Ohta, Keisuke
    Sasaki, Hirokazu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (12)
  • [4] Iterative phase retrieval in coherent diffractive imaging: practical issues
    Latychevskaia, Tatiana
    APPLIED OPTICS, 2018, 57 (25) : 7187 - 7197
  • [5] Coherent diffractive imaging using short wavelength light sources
    Quiney, H. M.
    JOURNAL OF MODERN OPTICS, 2010, 57 (13) : 1109 - 1149
  • [6] Imaging atomic-scale chemistry from fused multi-modal electron microscopy
    Schwartz, Jonathan
    Di, Zichao Wendy
    Jiang, Yi
    Fielitz, Alyssa J.
    Ha, Don-Hyung
    Perera, Sanjaya D.
    El Baggari, Ismail
    Robinson, Richard D.
    Fessler, Jeffrey A.
    Ophus, Colin
    Rozeveld, Steve
    Hovden, Robert
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [7] Diffractive Imaging Using Partially Coherent X Rays
    Whitehead, L. W.
    Williams, G. J.
    Quiney, H. M.
    Vine, D. J.
    Dilanian, R. A.
    Flewett, S.
    Nugent, K. A.
    Peele, A. G.
    Balaur, E.
    McNulty, I.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [8] In situ atomic-scale imaging of the metal/oxide interfacial transformation
    Zou, Lianfeng
    Li, Jonathan
    Zakharov, Dmitri
    Stach, Eric A.
    Zhou, Guangwen
    NATURE COMMUNICATIONS, 2017, 8
  • [9] Interface Atomic-Scale Structure and Its Impact on Quantum Electron Transport
    Wang, Zhongchang
    Saito, Mitsuhiro
    Tsukimoto, Susumu
    Ikuhara, Yuichi
    ADVANCED MATERIALS, 2009, 21 (48) : 4966 - +
  • [10] Electron diffractive imaging of the MgO nanoparticle: Towards atomic-resolution
    Dronyak, Roman V.
    Fong, Chi-Kai
    Liang, Keng S.
    Chen, Fu-Rong
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C130 - C130