Towards High-Performance Li-rich NCM∥Graphite Cells by Germanium-Polymer Coating of the Positive Electrode Material

被引:18
作者
Becker, Dina [1 ]
Boerner, Markus [1 ]
Friesen, Alex [1 ]
Klein, Sven [1 ]
Rodehorst, Uta [2 ]
Diehl, Marcel [1 ]
Winter, Martin [1 ,2 ]
Placke, Tobias [1 ]
Schmuch, Richard [1 ]
机构
[1] Univ Munster, MEET Battery Res Ctr, Inst Phys Chem, Munster 48149, Germany
[2] Forschungszentrum Julich, Helmholtz Inst Munster, IEK 12, Munster 48149, Germany
关键词
LITHIUM-ION BATTERIES; LAYERED CATHODE MATERIALS; SURFACE-MODIFICATION; ELECTROCHEMICAL PROPERTIES; CYCLING PERFORMANCE; THERMAL-STABILITY; ACTIVE MATERIALS; CAPACITY LOSSES; VOLTAGE DECAY; OXYGEN LOSS;
D O I
10.1149/1945-7111/ab8401
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The high specific capacity of Li-rich layered oxides of up to 300 mAh g(-1) renders them a promising class of positive electrode materials for high energy lithium ion batteries (LIBs). However, this material class suffers from poor capacity retention, voltage fade and structural degradation. The degradation phenomena include phase transformation and particle cracking during operation and take place in the bulk as well as the active material's surface. In this work, we demonstrate a straightforward approach for the surface modification of Li1.15Ni0.15Co0.15Mn0.55O2 for LIB cells. This strategy is based on a bis(carboxyethylgermanium)-based (Ge-132) coating, which is prepared via a simple sol-gel process. The coating layer is composed of a Ge-132 polymer network, which can coordinate on the oxygen atoms at the material's surface. As a result, LIB full-cells with coated Li-rich NCM vs a graphite negative electrode provide reversible capacities of approximate to 180 mAh g(-1) within a voltage range of 2.5-4.65 V for more than 200 cycles. The coated positive electrode exhibits a capacity retention improved by more than 20% compared to the uncoated reference material, which can be attributed to the suppression of parasitic side reactions at the cathode/electrolyte interface, less particle cracking upon electrochemical load and reduced manganese dissolution. (C) 2020 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.
引用
收藏
页数:12
相关论文
共 99 条
[1]   Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation [J].
Andre, D. ;
Meiler, M. ;
Steiner, K. ;
Wimmer, Ch ;
Soczka-Guth, T. ;
Sauer, D. U. .
JOURNAL OF POWER SOURCES, 2011, 196 (12) :5334-5341
[2]   Future generations of cathode materials: an automotive industry perspective [J].
Andre, Dave ;
Kim, Sung-Jin ;
Lamp, Peter ;
Lux, Simon Franz ;
Maglia, Filippo ;
Paschos, Odysseas ;
Stiaszny, Barbara .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6709-6732
[3]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[4]   INDUCTION OF INTERFERON AND ACTIVATION OF NK CELLS AND MACROPHAGES IN MICE BY ORAL-ADMINISTRATION OF GE-132, AN ORGANIC GERMANIUM COMPOUND [J].
ASO, H ;
SUZUKI, F ;
YAMAGUCHI, T ;
HAYASHI, Y ;
EBINA, T ;
ISHIDA, N .
MICROBIOLOGY AND IMMUNOLOGY, 1985, 29 (01) :65-74
[5]   Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries [J].
Assat, Gaurav ;
Tarascon, Jean-Marie .
NATURE ENERGY, 2018, 3 (05) :373-386
[6]  
Barai A, 2018, SCI REP-UK, V8, DOI [10.1038/s41598-017-18424-5, 10.1038/s41598-018-35308-4, 10.1038/s41598-018-33185-5]
[7]   Thermal analysis of repa-germanium (Ge-132) [J].
Batalu, D. ;
Paun, A. ;
Ferbinteanu, M. ;
Aldica, G. ;
Vlaicu, A. M. ;
Teodorescu, V. S. ;
Badica, P. .
THERMOCHIMICA ACTA, 2016, 644 :20-27
[8]   Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3CO1/3Mn1/3)O2 [J].
Belharouak, I ;
Lu, WQ ;
Vissers, D ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :329-335
[9]   Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density [J].
Bettge, Martin ;
Li, Yan ;
Gallagher, Kevin ;
Zhu, Ye ;
Wu, Qingliu ;
Lu, Wenquan ;
Bloom, Ira ;
Abraham, Daniel P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :A2046-A2055
[10]   Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems [J].
Betz, Johannes ;
Bieker, Georg ;
Meister, Paul ;
Placke, Tobias ;
Winter, Martin ;
Schmuch, Richard .
ADVANCED ENERGY MATERIALS, 2019, 9 (06)