Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials

被引:94
作者
Dong, Shengde [1 ,2 ,3 ]
Zhou, Yuan [1 ,2 ]
Hai, Chunxi [1 ,2 ]
Zeng, Jinbo [1 ,2 ]
Sun, Yanxia [1 ,2 ]
Shen, Yue [1 ,2 ]
Li, Xiang [1 ,2 ]
Ren, Xiufeng [1 ,2 ]
Sun, Chao [1 ,2 ,3 ]
Zhang, Guotai [1 ,2 ,3 ]
Wu, Zhaowei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sa, 18th Xinning Rd, Xining 810008, Peoples R China
[2] Key Lab Salt Lake Resources Chem Qinghai Prov, Xining 810008, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Lithium-rich manganese-based cathode materials; Li-ion battery; Nb doping; Electrochemical performance; Density functional theory; CYCLING STABILITY; LI1.2MN0.54NI0.13CO0.13O2; CATHODE; RATE CAPABILITY; SURFACE MODIFICATION; RECENT PROGRESS; OXIDE CATHODES; VOLTAGE DECAY; LI; ELECTRODES; NI;
D O I
10.1016/j.jpowsour.2020.228185
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study synthesizes pristine and Nb-doped lithium-rich manganese-based cathode materials by solvothermal and high-temperature solid-phase methods. Analysis by focused ion beam scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy indicates successful Nb doping into the material's bulk structure. Electrochemical evaluation reveals that electrochemical performance is significantly enhanced by Nb doping. The discharge capacity of Nb-0.02 can maintain 271.7 mAh.g(-1), and its cycle retention rate is up to 98.50% after 300 cycles at 0.2C; however, under the same parameters, the pristine material's discharge capacity and cycle retention rate are 212.8 mAh.g(-1) and 86.68%. The initial coulombic efficiency and initial discharge capacity of Nb-0.02 is 86.94% and 287.5 mAh.g(-1), while that of the pristine material is 73.59% and 234.2 mAh.g(-1). Density functional theory calculations demonstrate that Nb doping accelerates Li-ion diffusion and stabilizes material structure due to stronger Nb-O bonds from reduced Li-ion migration barrier energy. Thus, the proposed modification strategy for Nb doping can illuminate the structural design of lithium-rich manganese-based cathode materials.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Surface characterization of electrodes from high power lithium-ion batteries [J].
Andersson, AM ;
Abraham, DP ;
Haasch, R ;
MacLaren, S ;
Liu, J ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1358-A1369
[2]   Geometry dependence of cathode polarization in solid oxide fuel cells investigated by defined Sr-doped LaMnO3 microelectrodes [J].
Brichzin, V ;
Fleig, J ;
Habermeier, HU ;
Maier, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (09) :403-406
[3]   Synthesis and electrochemical characterization of LiMO2 (M = Ni, Ni0.75Co0.25) for rechargeable lithium ion batteries [J].
Chang, CC ;
Scarr, N ;
Kumta, PN .
SOLID STATE IONICS, 1998, 112 (3-4) :329-344
[4]   Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J].
Chen, Bozhou ;
Zhao, Bangchuan ;
Zhou, Jiafeng ;
Fang, Zhitang ;
Huang, Yanan ;
Zhu, Xuebin ;
Sun, Yuping .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (06) :994-1002
[5]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[6]   Cesium doping to improve the electrochemical performance of layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode material [J].
Ding, Xiang ;
Li, Yi-xuan ;
Deng, Miao-miao ;
Wang, Shuo ;
Aqsa, Yasmin ;
Hu, Qiao ;
Chen, Chun-hua .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 791 :100-108
[7]   Synthesis, electrochemical investigation and structural analysis of doped Li [Ni0.6Mn0.2Co0.2-xMx]O2 (x=0, 0.05; M = Al, Fe, Sn) cathode materials [J].
Eilers-Rethwisch, Matthias ;
Winter, Martin ;
Schappacher, Falko Mark .
JOURNAL OF POWER SOURCES, 2018, 387 :101-107
[8]   Ultrafast Heterogeneous Nucleation Enables a Hierarchical Surface Configuration of Lithium-Rich Layered Oxide Cathode Material for Enhanced Electrochemical Performances [J].
Guo, Haocheng ;
Jia, Kai ;
Han, Shaojie ;
Zhao, Hu ;
Qiu, Bao ;
Xia, Yonggao ;
Liu, Zhaoping .
ADVANCED MATERIALS INTERFACES, 2018, 5 (11)
[9]   Recent progress in high-voltage lithium ion batteries [J].
Hu, Meng ;
Pang, Xiaoli ;
Zhou, Zhen .
JOURNAL OF POWER SOURCES, 2013, 237 :229-242
[10]   Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives [J].
Hu, Sijiang ;
Pillai, Anoop. S. ;
Liang, Gemeng ;
Pang, Wei Kong ;
Wang, Hongqiang ;
Li, Qingyu ;
Guo, Zaiping .
ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (02) :277-311