On intriguing sets in five classes of strongly regular graphs

被引:0
作者
Sun, Xiufang [1 ]
Lu, Jianbing [2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
intriguing sets; strongly regular graphs; TIGHT SETS; M-OVOIDS;
D O I
10.1002/jcd.21832
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct intriguing sets in five classes of strongly regular graphs defined on nonisotropic points of finite classical polar spaces, and determine their intersection numbers.
引用
收藏
页码:384 / 405
页数:22
相关论文
共 21 条
  • [11] Intriguing sets of W(5, q), q even
    Cossidente, Antonio
    Pavese, Francesco
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 127 : 303 - 313
  • [12] De Beule J, 2017, ELECTRON J COMB, V24
  • [13] Intriguing Sets of Vertices of Regular Graphs
    De Bruyn, Bart
    Suzuki, Hiroshi
    [J]. GRAPHS AND COMBINATORICS, 2010, 26 (05) : 629 - 646
  • [14] On m-ovoids of symplectic polar spaces
    Feng, Tao
    Wang, Ye
    Xiang, Qing
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [15] An infinite family of m-ovoids of Q(4, q)
    Feng, Tao
    Tao, Ran
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2020, 63
  • [16] A family of m-ovoids of parabolic quadrics
    Feng, Tao
    Momihara, Koji
    Xiang, Qing
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 140 : 97 - 111
  • [17] Hirschfeld JWP, 2016, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4471-6790-7
  • [18] Hubaut X., 1983, ANN DISCRETE MATH, V18, P469
  • [19] SMALL TIGHT SETS IN FINITE ELLIPTIC, PARABOLIC AND HERMITIAN POLAR SPACES
    Metsch, Klaus
    [J]. COMBINATORICA, 2016, 36 (06) : 725 - 744
  • [20] Payne S. E., 1987, 18 SE INT C COMBINAT, V60, P243