The influence of surface texture and temparature deposition of TiO2 layer on crystalline silicon solar cells parameters

被引:0
|
作者
Panek, P. [1 ]
Drabczyk, K. [1 ]
Czternastek, H. [2 ]
Kusior, E. [2 ]
Zieba, P. [1 ]
Beltowska-Lehman, E. [1 ]
机构
[1] Polish Acad Sci, Inst Met & Mat Sci, PL-30059 Krakow, Poland
[2] AGH Univ Sci & Technol, Fac Elect Engn Automat Comp Sci & Elect, PL-30059 Krakow, Poland
关键词
titanium dioxide; antireflection coating; crystalline silicon solar cell;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
In the present work, the investigation of the titanium dioxide (TiO2) thin layer as an antireflection coating for silicon solar cells are presented. The TiO2 layers were obtained by the chemical vapour deposition method using tetraethylorthotitanat (C2H5O)Ti at temperatures of the silicon wafers in the range from 150 degrees C to 400 degrees C. It has been established that all of the obtained TiO2 layers contain anatase phase embedded in the amorphous background. A progress of the crystallization process with the increasing temperature of the substrate during the deposition has been observed. The change in opto-electronic parameters of silicon solar cells as a function of the deposition temperature of the antireflection coating has been discussed, taking into account the evolution of the crystallographic structure.
引用
收藏
页码:103 / 106
页数:4
相关论文
共 50 条
  • [31] The optical parameters of TiO2 antireflection coating prepared by atomic layer deposition method for photovoltaic application
    Szindler M.
    Szindler M.M.
    Optica Applicata, 2021, 50 (04) : 663 - 670
  • [32] Atomic Layer Deposition of TiO2 on Mesoporous nanolTO: Conductive Core-Shell Photoanodes for Dye-Sensitized Solar Cells
    Alibabaei, Leila
    Farnum, Byron H.
    Kalanyan, Berc
    Brennaman, M. Kyle
    Losego, Mark D.
    Parsons, Gregory N.
    Meyer, Thomas J.
    NANO LETTERS, 2014, 14 (06) : 3255 - 3261
  • [33] Research Progress on Metallization Technology of Electrochemical Deposition for Crystalline Silicon Solar Cells
    Wang L.
    Huang X.
    He J.
    Wang T.
    Lyu J.
    Wang J.
    Cailiao Daobao/Materials Reports, 2023, 37 (24):
  • [34] Influence of surface disorder, oxygen defects and bandgap in TiO2 nanostructures on the photovoltaic properties of dye sensitized solar cells
    Das, Tapan Kumar
    Ilaiyaraja, P.
    Mocherla, Pavana S. V.
    Bhalerao, G. M.
    Sudakar, C.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 : 194 - 209
  • [35] Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique
    Lien, Shui-Yang
    Wuu, Dong-Sing
    Yeh, Wen-Chang
    Liu, Jun-Chin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (16) : 2710 - 2719
  • [36] Optimization of antireflective coatings with nanostructured TiO2 for GaAs solar cells
    Abu-Shamleh, Amer
    Alzubi, Hani
    Alajlouni, Ahmad
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2021, 43
  • [37] Layer-by-layer TiO2 films as efficient blocking layers in dye-sensitized solar cells
    Patrocinio, A. O. T.
    Paterno, L. G.
    Iha, N. Y. Murakami
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2009, 205 (01) : 23 - 27
  • [38] Sol-gel TiO2 antireflective films for textured monocrystalline silicon solar cells
    San Vicente, S
    Morales, A
    Gutiérrez, MT
    THIN SOLID FILMS, 2002, 403 : 335 - 338
  • [39] Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells
    Zhang, Chenxi
    Luo, Yudan
    Chen, Xiaohong
    Ou-Yang, Wei
    Chen, Yiwei
    Sun, Zhuo
    Huang, Sumei
    APPLIED SURFACE SCIENCE, 2016, 388 : 82 - 88
  • [40] Eliminating Hysteresis of Perovskite Solar Cells with Hollow TiO2 Mesoporous Electron Transport Layer
    Wensheng Han
    Yongling Wang
    Jiawei Wan
    Dan Wang
    Chemical Research in Chinese Universities, 2022, 38 : 117 - 122