The rigidity of Clifford torus S-1(root 1/n)xS(n-1)(root n-1/n)

被引:23
作者
Cheng, QM
机构
[1] Department of Mathematics, Saga University
关键词
D O I
10.1007/BF02566409
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that if M is an n-dimensional closed minimal hypersurface with two distinct principal curvatures of a unit sphere S-n+1(1), then S = n and M is a Clifford torus if n less than or equal to S less than or equal to n + [2n(2)(n + 4)/3(n(n + 4) + 4)], where S is the squared norm of the second fundamental form of M.
引用
收藏
页码:60 / 69
页数:10
相关论文
共 6 条
[1]  
CHENG QM, 1993, MEM FS KYUSHU U, V47, P79
[2]  
CHERN SS, 1970, MINIMAL SUBMANIFOLDS, P59
[3]  
LAWSON HB, 1969, ANN MATH, V89, P179
[5]  
YANG HC, 1991, CHINESE SCI BULL, V36, P1
[6]  
YANG HC, 1994, MANUSCRIPTA MATH, V82, P89