Synergistic nanofibrous adsorbent for uranium extraction from seawater

被引:26
作者
Zhang, Bowu [1 ]
Guo, Xiaojing [1 ]
Xie, Siyuan [1 ,2 ]
Liu, Xiyan [1 ]
Ling, Changjian [1 ]
Ma, Hongjuan [1 ]
Yu, Ming [1 ]
Li, Jingye [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, CAS Ctr Innovat Adv Nucl Energy, 2019 Jialuo Rd, Shanghai 201800, Peoples R China
[2] State Intellectual Property Off PR China, Patent Off, Patent Examinat Cooperat Ctr, 55 Fengchan Rd, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
DENSITY-FUNCTIONAL THEORY; SEQUESTERING URANIUM; METHACRYLIC-ACID; PARAMETER SETS; AMIDOXIME; ADSORPTION; COMPLEXATION; CARBOXYL; FIBER; PSEUDOPOTENTIALS;
D O I
10.1039/c6ra18785d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Huge reserves of uranium (U) in seawater have been of interest to scientists and energy companies since the 1950s. However, extracting trace concentrations (3.3 ppb) of U from seawater is economically unfeasible without new, high-performance adsorbents. Here, a mat-like nanofibrous composite adsorbent containing binary coordination groups (amidoxime (AO) and carboxyl (AC(-))) in a highly porous network of nanofibers is constructed via a parallel-blend electrospinning method. Its U uptake in artificial seawater is more than double those of adsorbents containing AO or AC(-) groups alone. Density functional theory (DFT) calculations reveal that this synergistic effect is because the AC(-) group promotes both the U 5f/6d orbital contribution to U-AO bonding and the dissociation of uranyl tricarbonate ions in seawater. In a continuous flow-through experiment with simulated seawater, the nanofibrous adsorbent achieves an adsorption capacity up to 2.86 mg U g(ads)(-1) in 30 d but without saturation, indicating a high efficiency for U extraction.
引用
收藏
页码:81995 / 82005
页数:11
相关论文
共 63 条
[1]   Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption [J].
Bai, Zhi-Qiang ;
Yuan, Li-Yong ;
Zhu, Lin ;
Liu, Zhi-Rong ;
Chu, Sheng-Qi ;
Zheng, Li-Rong ;
Zhang, Jing ;
Chai, Zhi-Fang ;
Shi, Wei-Qun .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (02) :525-534
[2]  
Bardi Ugo, 2010, Sustainability, V2, P122, DOI 10.3390/su2040980
[3]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[4]   Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)-co-chlorinated Poly(vinyl chloride) (PVC-co-CPVC) Fiber [J].
Brown, Suree ;
Yue, Yanfeng ;
Kuo, Li-Jung ;
Mehio, Nada ;
Li, Meijun ;
Gill, Gary ;
Tsouris, Costas ;
Mayes, Richard T. ;
Saito, Tomonori ;
Dai, Sheng .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (15) :4139-4148
[5]   Highly porous and stable metal-organic frameworks for uranium extraction [J].
Carboni, Michael ;
Abney, Carter W. ;
Liu, Shubin ;
Lin, Wenbin .
CHEMICAL SCIENCE, 2013, 4 (06) :2396-2402
[6]   Adsorption of UO22+ by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group [J].
Choi, SH ;
Nho, YC .
RADIATION PHYSICS AND CHEMISTRY, 2000, 57 (02) :187-193
[7]  
Christopher D., 2006, POLYM NANOFIBERS, P137
[8]   Novel poly(imide dioxime) sorbents: Development and testing for enhanced extraction of uranium from natural seawater [J].
Das, S. ;
Brown, S. ;
Mayes, R. T. ;
Janke, C. J. ;
Tsouris, C. ;
Kuo, L. -J. ;
Gill, G. ;
Dai, S. .
CHEMICAL ENGINEERING JOURNAL, 2016, 298 :125-135
[9]   Extracting Uranium from Seawater: Promising AF Series Adsorbents [J].
Das, S. ;
Oyola, Y. ;
Mayes, Richard T. ;
Janke, Chris J. ;
Kuo, L. -J. ;
Gill, G. ;
Wood, J. R. ;
Dai, S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (15) :4110-4117
[10]  
Das S, 2016, IND ENG CHEM RES, V55, P4103, DOI 10.1021/acs.iecr.5b03135