Plasmonic Coupling of AgNPs near Graphene Edges: A Cross-Section Strategy for High-Performance SERS Sensing

被引:31
作者
Cao, Ziyang [1 ]
He, Peng [2 ,3 ]
Huang, Tao [2 ,3 ]
Yang, Siwei [2 ,3 ]
Han, Sancan [1 ]
Wang, Xianying [1 ]
Ding, Guqiao [2 ,3 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 20050, Peoples R China
[3] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ENHANCED RAMAN-SCATTERING; NANOPARTICLES; OXIDE; AG; ENRICHMENT; SUBSTRATE; SIZE;
D O I
10.1021/acs.chemmater.9b05293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fully exploiting plasmonic coupling of nanostructured metals is an effective method to promote surface-enhanced Raman scattering (SERS) performance for trace detection of molecules. Herein, we propose a cross-section strategy to maximize plasmonic coupling of silver nanoparticles (AgNPs) in a graphene-based membrane. Specifically, AgNPs are isolated by water-dispersible graphene (W-Gr) and enriched in the vicinity of W-Gr edges when assembling into a macroscopic membrane, thus affording AgNPs on the cross section with uniform and proper gaps in the vertical plane to generate maximal plasmon coupling. Moreover, the superior sensitivity (5 x 10(-13) M for R6G) to most reported graphene-metal structures and the long-term stability against aerobic oxidation jointly make the cross-section of the AgNPs/W-Gr membrane a potential SERS substrate for trace-molecule detection. The revealed mechanism for AgNPs enrichment near edges highlights the importance of the flow-directed assembly process of W-Gr. This work provides new insight into the interpretation and utilization of two-dimensional materials as building blocks in high-performance SERS sensing.
引用
收藏
页码:3813 / 3822
页数:10
相关论文
共 37 条
[1]   Rationally designed nanostructures for surface-enhanced Raman spectroscopy [J].
Banholzer, Matthew J. ;
Millstone, Jill E. ;
Qin, Lidong ;
Mirkin, Chad A. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) :885-897
[2]   Optical constants of graphene layers in the visible range [J].
Bruna, M. ;
Borini, S. .
APPLIED PHYSICS LETTERS, 2009, 94 (03)
[3]   Probing the structure of single-molecule surface-enhanced Raman scattering hot spots [J].
Camden, Jon P. ;
Dieringer, Jon A. ;
Wang, Yingmin ;
Masiello, David J. ;
Marks, Lawrence D. ;
Schatz, George C. ;
Van Duyne, Richard P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (38) :12616-+
[4]  
Ding SY, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats.2016.71, 10.1038/natrevmats.2016.21]
[5]   Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing [J].
Fan, Wei ;
Lee, Yih Hong ;
Pedireddy, Srikanth ;
Zhang, Qi ;
Liu, Tianxi ;
Ling, Xing Yi .
NANOSCALE, 2014, 6 (09) :4843-4851
[6]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22
[7]   Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene [J].
Gong, Tiancheng ;
Zhu, Yong ;
Zhang, Jie ;
Ren, Wenjie ;
Quan, Jiamin ;
Wang, Ning .
CARBON, 2015, 87 :385-394
[8]   Processable Aqueous Dispersions of Graphene Stabilized by Graphene Quantum Dots [J].
He, Peng ;
Sun, Jing ;
Tian, Suyun ;
Yang, Siwei ;
Ding, Shengju ;
Ding, Guqiao ;
Xie, Xiaoming ;
Jiang, Mianheng .
CHEMISTRY OF MATERIALS, 2015, 27 (01) :218-226
[9]   On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation [J].
Jain, Prashant K. ;
Huang, Wenyu ;
El-Sayed, Mostafa A. .
NANO LETTERS, 2007, 7 (07) :2080-2088
[10]   Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications [J].
Lai, Huasheng ;
Xu, Fugang ;
Zhang, Yue ;
Wang, Li .
JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (24) :4008-4028