Low complexity normal bases in F2n

被引:6
作者
Young, B [1 ]
Panario, D [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
normal elements; optimal normal bases; multiplication tables;
D O I
10.1016/S1071-5797(03)00040-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate low complexity normal bases in finite fields of the form F-2n. First, we prove that if two normal elements have the same multiplication table, then they are conjugates. Then, we provide a partial converse to the known fact that if alpha generates a Type I optimal normal basis in F-2n, then its dual basis has complexity 3n - 3. Finally, we determine the multiplication tables of low complexity normal elements that arise from products of normal elements in subfields of F-2n. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 7 条
[1]   LOW COMPLEXITY NORMAL BASES [J].
ASH, DW ;
BLAKE, IF ;
VANSTONE, SA .
DISCRETE APPLIED MATHEMATICS, 1989, 25 (03) :191-210
[2]   MATRIX FIELDS OVER FINITE EXTENSIONS OF PRIME FIELDS [J].
BEARD, JTB .
DUKE MATHEMATICAL JOURNAL, 1972, 39 (03) :475-&
[3]  
Gao S., 1992, Designs, Codes and Cryptography, V2, P315, DOI 10.1007/BF00125200
[4]  
Gao SH, 2000, J SYMB COMPUT, V29, P879, DOI [10.1006/jsco.1999.0309, 10.1006/jsco.2000.0309]
[5]  
Jungnickel D., 1993, Finite Fields: Structure and Arithmetics
[6]  
Lidl R., 1983, FINITE FIELDS
[7]  
Menezes A. J., 1993, APPL FINITE FIELDS