Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A Factorized Architecture Search Framework

被引:179
作者
Zhong, Zilong [1 ,2 ]
Li, Ying [3 ]
Ma, Lingfei [4 ,5 ]
Li, Jonathan [6 ,7 ]
Zheng, Wei-Shi [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou 510006, Peoples R China
[3] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[4] Minist Educ, Engn Res Ctr State Financial Secur, Beijing 102206, Peoples R China
[5] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 102206, Peoples R China
[6] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[7] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国博士后科学基金;
关键词
Convolution; Transformers; Computer architecture; Task analysis; Training; Kernel; Hyperspectral imaging; Factorized architecture search (FAS); spatial attention; spectral association; spectral-spatial transformer network (SSTN); MARKOV-RANDOM-FIELDS; AUTOMATIC DESIGN; REPRESENTATION; ATTENTION;
D O I
10.1109/TGRS.2021.3115699
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Neural networks have dominated the research of hyperspectral image classification, attributing to the feature learning capacity of convolution operations. However, the fixed geometric structure of convolution kernels hinders long-range interaction between features from distant locations. In this article, we propose a novel spectral-spatial transformer network (SSTN), which consists of spatial attention and spectral association modules, to overcome the constraints of convolution kernels. Also, we design a factorized architecture search (FAS) framework that involves two independent subprocedures to determine the layer-level operation choices and block-level orders of SSTN. Unlike conventional neural architecture search (NAS) that requires a bilevel optimization of both network parameters and architecture settings, the FAS focuses only on finding out optimal architecture settings to enable a stable and fast architecture search. Extensive experiments conducted on five popular HSI benchmarks demonstrate the versatility of SSTNs over other state-of-the-art (SOTA) methods and justify the FAS strategy. On the University of Houston dataset, SSTN obtains comparable overall accuracy to SOTA methods with a small fraction (1.2%) of multiply-and-accumulate operations compared to a strong baseline spectral-spatial residual network (SSRN). Most importantly, SSTNs outperform other SOTA networks using only 1.2% or fewer MACs of SSRNs on the Indian Pines, the Kennedy Space Center, the University of Pavia, and the Pavia Center datasets.
引用
收藏
页数:15
相关论文
共 48 条
  • [1] Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network
    Cao, Xiangyong
    Zhou, Feng
    Xu, Lin
    Meng, Deyu
    Xu, Zongben
    Paisley, John
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) : 2354 - 2367
  • [2] Hyperspectral Image Classification via Kernel Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01): : 217 - 231
  • [3] Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification
    Chen, Yushi
    Zhu, Kaiqiang
    Zhu, Lin
    He, Xin
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 7048 - 7066
  • [4] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [5] Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network
    Chen, Yushi
    Zhao, Xing
    Jia, Xiuping
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2381 - 2392
  • [6] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [7] Morphological Attribute Profiles for the Analysis of Very High Resolution Images
    Dalla Mura, Mauro
    Benediktsson, Jon Atli
    Waske, Bjoern
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10): : 3747 - 3762
  • [8] Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest
    Debes, Christian
    Merentitis, Andreas
    Heremans, Roel
    Hahn, Juergen
    Frangiadakis, Nikolaos
    van Kasteren, Tim
    Liao, Wenzhi
    Bellens, Rik
    Pizurica, Aleksandra
    Gautama, Sidharta
    Philips, Wilfried
    Prasad, Saurabh
    Du, Qian
    Pacifici, Fabio
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2405 - 2418
  • [9] Automatic Design of CNNs via Differentiable Neural Architecture Search for PolSAR Image Classification
    Dong, Hongwei
    Zou, Bin
    Zhang, Lamei
    Zhang, Siyu
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (09): : 6362 - 6375
  • [10] Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism
    Fang, Bei
    Li, Ying
    Zhang, Haokui
    Chan, Jonathan Cheung-Wai
    [J]. REMOTE SENSING, 2019, 11 (02)