Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A Factorized Architecture Search Framework

被引:213
作者
Zhong, Zilong [1 ,2 ]
Li, Ying [3 ]
Ma, Lingfei [4 ,5 ]
Li, Jonathan [6 ,7 ]
Zheng, Wei-Shi [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou 510006, Peoples R China
[3] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[4] Minist Educ, Engn Res Ctr State Financial Secur, Beijing 102206, Peoples R China
[5] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 102206, Peoples R China
[6] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[7] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国博士后科学基金;
关键词
Convolution; Transformers; Computer architecture; Task analysis; Training; Kernel; Hyperspectral imaging; Factorized architecture search (FAS); spatial attention; spectral association; spectral-spatial transformer network (SSTN); MARKOV-RANDOM-FIELDS; AUTOMATIC DESIGN; REPRESENTATION; ATTENTION;
D O I
10.1109/TGRS.2021.3115699
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Neural networks have dominated the research of hyperspectral image classification, attributing to the feature learning capacity of convolution operations. However, the fixed geometric structure of convolution kernels hinders long-range interaction between features from distant locations. In this article, we propose a novel spectral-spatial transformer network (SSTN), which consists of spatial attention and spectral association modules, to overcome the constraints of convolution kernels. Also, we design a factorized architecture search (FAS) framework that involves two independent subprocedures to determine the layer-level operation choices and block-level orders of SSTN. Unlike conventional neural architecture search (NAS) that requires a bilevel optimization of both network parameters and architecture settings, the FAS focuses only on finding out optimal architecture settings to enable a stable and fast architecture search. Extensive experiments conducted on five popular HSI benchmarks demonstrate the versatility of SSTNs over other state-of-the-art (SOTA) methods and justify the FAS strategy. On the University of Houston dataset, SSTN obtains comparable overall accuracy to SOTA methods with a small fraction (1.2%) of multiply-and-accumulate operations compared to a strong baseline spectral-spatial residual network (SSRN). Most importantly, SSTNs outperform other SOTA networks using only 1.2% or fewer MACs of SSRNs on the Indian Pines, the Kennedy Space Center, the University of Pavia, and the Pavia Center datasets.
引用
收藏
页数:15
相关论文
共 48 条
[1]   Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network [J].
Cao, Xiangyong ;
Zhou, Feng ;
Xu, Lin ;
Meng, Deyu ;
Xu, Zongben ;
Paisley, John .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) :2354-2367
[2]   Hyperspectral Image Classification via Kernel Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :217-231
[3]   Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification [J].
Chen, Yushi ;
Zhu, Kaiqiang ;
Zhu, Lin ;
He, Xin ;
Ghamisi, Pedram ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09) :7048-7066
[4]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[5]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392
[6]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[7]   Morphological Attribute Profiles for the Analysis of Very High Resolution Images [J].
Dalla Mura, Mauro ;
Benediktsson, Jon Atli ;
Waske, Bjoern ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10) :3747-3762
[8]   Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest [J].
Debes, Christian ;
Merentitis, Andreas ;
Heremans, Roel ;
Hahn, Juergen ;
Frangiadakis, Nikolaos ;
van Kasteren, Tim ;
Liao, Wenzhi ;
Bellens, Rik ;
Pizurica, Aleksandra ;
Gautama, Sidharta ;
Philips, Wilfried ;
Prasad, Saurabh ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2405-2418
[9]   Automatic Design of CNNs via Differentiable Neural Architecture Search for PolSAR Image Classification [J].
Dong, Hongwei ;
Zou, Bin ;
Zhang, Lamei ;
Zhang, Siyu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (09) :6362-6375
[10]   Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism [J].
Fang, Bei ;
Li, Ying ;
Zhang, Haokui ;
Chan, Jonathan Cheung-Wai .
REMOTE SENSING, 2019, 11 (02)