Singular points of a moving contact line

被引:11
|
作者
Ben Amar, M
Cummings, L
Pomeau, Y
机构
[1] Ecole Normale Super, Phys Stat Lab, F-75231 Paris 05, France
[2] Univ Nottingham, Sch Math Sci, Div Theoret Mech, Nottingham NG7 2RD, England
[3] Lab ASCI, F-91405 Orsay, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE | 2001年 / 329卷 / 04期
关键词
wetting; contact lines; films; singularities; lubrication theory;
D O I
10.1016/S1620-7742(01)01335-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is proposed to represent the dynamics of a moving contact line by an Onsager like mobility relation between the contact angle and the speed of the moving line, including an Arrhenius factor small enough in many physical situations to be the limiting factor for the motion. The liquid-vapor interface is then in quasiequilibrium which allows one to analyse a dynamical wetting transition. This approach predicts well the formation of angular points on the rear edge of droplets sliding on a tilted plane. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [21] The extended discontinuous Galerkin method adapted for moving contact line problems via the generalized Navier boundary condition
    Smuda, Martin
    Kummer, Florian
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (09) : 2921 - 2945
  • [22] Singular Points of the Wigner Caustic and Affine Equidistants of Planar Curves
    Domitrz, Wojciech
    Zwierzynski, Michal
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (01): : 11 - 26
  • [23] Singular Points of the Wigner Caustic and Affine Equidistants of Planar Curves
    Wojciech Domitrz
    Michał Zwierzyński
    Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 11 - 26
  • [24] Singular points of order k of Clarke regular and arbitrary functions
    Zajicek, Ludek
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2012, 53 (01): : 51 - 63
  • [25] Numerical Simulations of Flows with Moving Contact Lines
    Sui, Yi
    Ding, Hang
    Spelt, Peter D. M.
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 46, 2014, 46 : 97 - 119
  • [26] Three-phase contact line and line tension of electrolyte solutions in contact with charged substrates
    Ibagon, Ingrid
    Bier, Markus
    Dietrich, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (24)
  • [27] Moving Contact Lines: Scales, Regimes, and Dynamical Transitions
    Snoeijer, Jacco H.
    Andreotti, Bruno
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 45, 2013, 45 : 269 - 292
  • [28] Dynamic hysteresis of an oscillatory contact line
    Shen, Jiaxing
    Lee, Yaerim
    Li, Yuanzhe
    Zaleski, Stephane
    Amberg, Gustav
    Shiomi, Junichiro
    JOURNAL OF FLUID MECHANICS, 2024, 1000
  • [29] Dynamics of the contact line on rough substrates
    Prevost, A
    Rolley, E
    Guthmann, C
    Poujade, M
    PHYSICA B-CONDENSED MATTER, 2000, 284 : 145 - 146
  • [30] Level set reinitialization at a contact line
    Della Rocca, G.
    Blanquart, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 265 : 34 - 49