Singular points of a moving contact line

被引:11
|
作者
Ben Amar, M
Cummings, L
Pomeau, Y
机构
[1] Ecole Normale Super, Phys Stat Lab, F-75231 Paris 05, France
[2] Univ Nottingham, Sch Math Sci, Div Theoret Mech, Nottingham NG7 2RD, England
[3] Lab ASCI, F-91405 Orsay, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE | 2001年 / 329卷 / 04期
关键词
wetting; contact lines; films; singularities; lubrication theory;
D O I
10.1016/S1620-7742(01)01335-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is proposed to represent the dynamics of a moving contact line by an Onsager like mobility relation between the contact angle and the speed of the moving line, including an Arrhenius factor small enough in many physical situations to be the limiting factor for the motion. The liquid-vapor interface is then in quasiequilibrium which allows one to analyse a dynamical wetting transition. This approach predicts well the formation of angular points on the rear edge of droplets sliding on a tilted plane. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [1] Corner singularity of a contact line moving on a solid substrate
    Stone, HA
    Limat, L
    Wilson, SK
    Flesselles, JM
    Podgorski, T
    COMPTES RENDUS PHYSIQUE, 2002, 3 (01) : 103 - 110
  • [2] Thin-Film Equations with Singular Potentials: An Alternative Solution to the Contact-Line Paradox
    Durastanti, Riccardo
    Giacomelli, Lorenzo
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (01)
  • [3] Thin-Film Equations with Singular Potentials: An Alternative Solution to the Contact-Line Paradox
    Riccardo Durastanti
    Lorenzo Giacomelli
    Journal of Nonlinear Science, 2024, 34
  • [4] Moving Contact Line Instability on Soluble Fibers
    Yang, Jinhong
    Yuan, Quanzi
    ADVANCED MATERIALS INTERFACES, 2022, 9 (34):
  • [5] Moving contact-line mobility measured
    Xia, Yi
    Steen, Paul H.
    JOURNAL OF FLUID MECHANICS, 2018, 841 : 767 - 783
  • [6] On the distinguished limits of the Navier slip model of the moving contact line problem
    Ren, Weiqing
    Trinh, Philippe H.
    Weinan, E.
    JOURNAL OF FLUID MECHANICS, 2015, 772 : 107 - 126
  • [7] Inertial effects on the flow near a moving contact line
    Varma, Akhil
    Roy, Anubhab
    Puthenveettil, Baburaj A.
    JOURNAL OF FLUID MECHANICS, 2021, 924
  • [8] THE MOVING CONTACT LINE ON A SMOOTH SOLID-SURFACE
    SHIKHMURZAEV, YD
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1993, 19 (04) : 589 - 610
  • [9] Theoretical model of a finite force at the moving contact line
    Zhang, Peter
    Mohseni, Kamran
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2020, 132 (132)
  • [10] Moving contact line dynamics: from diffuse to sharp interfaces
    Kusumaatmaja, H.
    Hemingway, E. J.
    Fielding, S. M.
    JOURNAL OF FLUID MECHANICS, 2016, 788 : 209 - 227