Testing linearity in partial functional linear quantile regression model based on regression rank scores

被引:2
作者
Yu, Ping [1 ,2 ]
Du, Jiang [1 ]
Zhang, Zhongzhan [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041000, Shanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Functional data analysis; Functional linear quantile regression; Functional principal component analysis; Rank score test; ESTIMATORS;
D O I
10.1007/s42952-020-00070-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates the hypothesis test of the parametric component in partial functional linear quantile regression model in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. A quantile rank score test based on functional principal component analysis is developed. Under mild conditions, we establish the consistency of the proposed test statistic, and show that the proposed test can detect Pitman local alternatives converging to the null hypothesis at the usual parametric rate. A simulation study shows that the proposed test procedure has good size and power with finite sample sizes. Finally, an illustrative example is given through fitting the Berkeley growth data and testing the effect of gender on the height of kids.
引用
收藏
页码:214 / 232
页数:19
相关论文
共 50 条
  • [31] Subgroup analysis for functional partial linear regression model
    Ma, Haiqiang
    Liu, Chao
    Xu, Sheng
    Yang, Jin
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (02): : 559 - 579
  • [32] SIMULTANEOUS FUNCTIONAL QUANTILE REGRESSION
    Hu, Boyi
    Hu, Xixi
    Liu, Hua
    You, Jinhong
    Cao, Jiguo
    STATISTICA SINICA, 2024, 34 (02) : 867 - 888
  • [33] Partially functional linear quantile regression model and variable selection with censoring indicators MAR
    Wu, Chengxin
    Ling, Nengxiang
    Vieu, Philippe
    Liang, Wenjuan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 197
  • [34] Statistical inference in the partial functional linear expectile regression model
    Xiao, Juxia
    Yu, Ping
    Song, Xinyuan
    Zhang, Zhongzhan
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (12) : 2601 - 2630
  • [35] Composite expectile estimation in partial functional linear regression model
    Yu, Ping
    Song, Xinyuan
    Du, Jiang
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 203
  • [36] Statistical inference in the partial functional linear expectile regression model
    Juxia Xiao
    Ping Yu
    Xinyuan Song
    Zhongzhan Zhang
    Science China Mathematics, 2022, 65 : 2601 - 2630
  • [37] Varying-coefficient partially functional linear quantile regression models
    Ping Yu
    Jiang Du
    Zhongzhan Zhang
    Journal of the Korean Statistical Society, 2017, 46 : 462 - 475
  • [38] Quantile regression for functional partially linear model in ultra-high dimensions
    Ma, Haiqiang
    Li, Ting
    Zhu, Hongtu
    Zhu, Zhongyi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 129 : 135 - 147
  • [39] Extreme quantile estimation for partial functional linear regression models with heavy-tailed distributions
    Zhu, Hanbing
    Li, Yehua
    Liu, Baisen
    Yao, Weixin
    Zhang, Riquan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 267 - 286
  • [40] On prediction rate in partial functional linear regression
    Shin, Hyejin
    Lee, Myung Hee
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 103 (01) : 93 - 106