Testing linearity in partial functional linear quantile regression model based on regression rank scores

被引:1
作者
Yu, Ping [1 ,2 ]
Du, Jiang [1 ]
Zhang, Zhongzhan [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041000, Shanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Functional data analysis; Functional linear quantile regression; Functional principal component analysis; Rank score test; ESTIMATORS;
D O I
10.1007/s42952-020-00070-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates the hypothesis test of the parametric component in partial functional linear quantile regression model in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. A quantile rank score test based on functional principal component analysis is developed. Under mild conditions, we establish the consistency of the proposed test statistic, and show that the proposed test can detect Pitman local alternatives converging to the null hypothesis at the usual parametric rate. A simulation study shows that the proposed test procedure has good size and power with finite sample sizes. Finally, an illustrative example is given through fitting the Berkeley growth data and testing the effect of gender on the height of kids.
引用
收藏
页码:214 / 232
页数:19
相关论文
共 33 条
[1]  
[Anonymous], 2012, J ROY STAT SOC B, DOI DOI 10.1111/j.1467-9868.2011.01008.x
[2]  
[Anonymous], 2005, Sankhya: The Indian Journal of Statistics
[3]  
Cai T, 2006, ANN STAT, V34, p2159 2179
[4]   Quantile regression when the covariates are functions [J].
Cardot, H ;
Crambes, C ;
Sarda, P .
JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (07) :841-856
[5]  
Cardot H, 2003, STAT SINICA, V13, P571
[6]   Functional clustering and identifying substructures of longitudinal data [J].
Chiou, Jeng-Min ;
Li, Pai-Ling .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :679-699
[7]   SMOOTHING SPLINES ESTIMATORS FOR FUNCTIONAL LINEAR REGRESSION [J].
Crambes, Christophe ;
Kneip, Alois ;
Sarda, Pascal .
ANNALS OF STATISTICS, 2009, 37 (01) :35-72
[8]  
Ferraty F., 2006, SPR S STAT
[9]  
Gutenbrunner C., 1993, J. Nonparametr. Stat., V2, DOI [DOI 10.1080/10485259308832561, 10.1080/10485259308832561]
[10]   Methodology and convergence rates for functional linear regression [J].
Hall, Peter ;
Horowitz, Joel L. .
ANNALS OF STATISTICS, 2007, 35 (01) :70-91