Covariant formulation of the post-1-Newtonian approximation to general relativity

被引:26
作者
Tichy, Wolfgang [1 ]
Flanagan, Eanna E. [2 ]
机构
[1] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA
[2] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
CELESTIAL MECHANICS; NEWTONIAN LIMIT; DEFINITION; EQUATIONS;
D O I
10.1103/PhysRevD.84.044038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive a coordinate-independent formulation of the post-1-Newtonian approximation to general relativity. This formulation is a generalization of the Newton-Cartan geometric formulation of Newtonian gravity. It involves several fields and a connection, but no spacetime metric at the fundamental level. We show that the usual coordinate-dependent equations of post-Newtonian gravity are recovered when one specializes to asymptotically flat spacetimes and to appropriate classes of coordinates.
引用
收藏
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 1981, Grundlagenprobleme der modernen Physik: Festschrift far Peter Mittelstaedt zum 50. Geburtstag
[2]  
[Anonymous], 1987, The problem of motion in Newtonian and Einsteinian gravity
[3]  
[Anonymous], CR ACAD SCI PARIS
[4]  
[Anonymous], ARXIV09073596
[5]  
Blanchet L, 2006, LIVING REV RELATIV, V9, DOI [10.12942/lrr-2006-4, 10.12942/lrr-2002-3]
[6]  
Cartan E., 1923, ANN SCIENT EC NORM S, V40, P325, DOI DOI 10.24033/ASENS.751
[7]  
Cartan E., 1924, ANN SCI ECOLE NORM S, V41, P1
[8]   GENERAL-RELATIVISTIC CELESTIAL MECHANICS .1. METHOD AND DEFINITION OF REFERENCE SYSTEMS [J].
DAMOUR, T ;
SOFFEL, M ;
XU, CM .
PHYSICAL REVIEW D, 1991, 43 (10) :3273-3307
[9]   GENERAL-RELATIVISTIC CELESTIAL MECHANICS .2. TRANSLATIONAL EQUATIONS OF MOTION [J].
DAMOUR, T ;
SOFFEL, M ;
XU, CM .
PHYSICAL REVIEW D, 1992, 45 (04) :1017-1044
[10]   GENERAL-RELATIVISTIC CELESTIAL MECHANICS .3. ROTATIONAL EQUATIONS OF MOTION [J].
DAMOUR, T ;
SOFFEL, M ;
XU, CM .
PHYSICAL REVIEW D, 1993, 47 (08) :3124-3135