We propose two inductive approaches for determining the cohomology of Deligne-Lusztig varieties in the case of G = GL(n). The first one uses Demazure compactifications and analyzes the corresponding Mayer-Vietoris spectral sequence. This allows us to give an inductive formula for the Tate twist -1 contribution of the cohomology of a DL-variety. The second approach relies on considering more generally DL-varieties attached to hypersquares in the Weyl group. Here we give explicit formulas for the cohomology of height-one elements.
机构:
Univ Caen Basse Normandie, Nicolas Oresme CNRS UMR 61 39, Math Lab, F-14032 Caen, FranceUniv Caen Basse Normandie, Nicolas Oresme CNRS UMR 61 39, Math Lab, F-14032 Caen, France
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Achar, P. N.
Henderson, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, AustraliaLouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Henderson, A.
Juteau, D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Caen Basse Normandie, CNRS, Lab Math Nicolas Oresme, F-14032 Caen, FranceLouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Juteau, D.
Riche, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Blaise Pascal, CNRS, UMR 6620, Math Lab, Campus Univ Cezeaux, F-63177 Aubiere, FranceLouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA