Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom

被引:80
作者
Wen, Honggui [1 ]
Yang, Peiyuan [1 ]
Liu, Guanlin [1 ]
Xu, Shuxing [1 ]
Yao, Huilu [1 ]
Li, Wangtao [1 ]
Qu, Hang [1 ]
Ding, Jiajun [1 ]
Li, Jiayu [1 ]
Wan, Lingyu [1 ]
机构
[1] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Blue energy harvesting; Six degrees of freedom; Translational motion; Rotational motion; WATER-WAVE ENERGY; NETWORKS;
D O I
10.1016/j.nanoen.2021.106796
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerators (TENGs) have recently become some of the most promising harvesters of the immense energy stored in the constant motion of ocean waves. Since ocean waves are chaotic and irregular, a TENG suitable for multiple motions is highly desirable for blue energy harvesting. We designed and fabricated a flower-like TENG (FL-TENG) for kinetic energy harvesting with six degrees of freedom. It consisted of six flowerpetal sub-TENGs and two flower-core sub-TENGs that worked in the contact-separation mode. The FL-TENG converted kinetic energy into electric energy with the "flowering" and "folding" motions triggered by water waves. The petals of the FL-TENG mainly collected kinetic energy with two degrees of freedom for horizontal motion and with three degrees of freedom for rotational motion, and the cores of the TENGs harvested translational kinetic energy with one degree of freedom in the vertical direction. The FL-TENG demonstrated excellent power generation performance for different motion triggers. In various water wave environments, the FL-TENG efficiently collected kinetic energies with different degrees of freedom. Triggered by a water wave frequency of about 1.3 Hz and a wave height near 8 cm, the FL-TENG charged a capacitor of 220 mu F to a voltage of 1.3 V in 1 min, supplying power to a watch, a calculator, and a hygrometer. It had robust functionality efficiency for various waves and it showed promising applications in developing self-powered smart marine sensors and distributed power systems in oceans.
引用
收藏
页数:9
相关论文
共 39 条
[1]   High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping [J].
Bai, Yu ;
Xu, Liang ;
He, Chuan ;
Zhu, Laipan ;
Yang, Xiaodan ;
Jiang, Tao ;
Nie, Jinhui ;
Zhong, Wei ;
Wang, Zhong Lin .
NANO ENERGY, 2019, 66
[2]   The Mosaic of Surface Charge in Contact Electrification [J].
Baytekin, H. T. ;
Patashinski, A. Z. ;
Branicki, M. ;
Baytekin, B. ;
Soh, S. ;
Grzybowski, B. A. .
SCIENCE, 2011, 333 (6040) :308-312
[3]   Is Water Necessary for Contact Electrification? [J].
Baytekin, H. Tarik ;
Baytekin, Bilge ;
Soh, Siowling ;
Grzybowski, Bartosz A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (30) :6766-6770
[4]   Marine Renewable Energy Seascape [J].
Borthwick, Alistair G. L. .
ENGINEERING, 2016, 2 (01) :69-78
[5]   A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking [J].
Chandrasekhar, Arunkumar ;
Vivekananthan, Venkateswaran ;
Kim, Sang-Jae .
NANO ENERGY, 2020, 69
[6]   Polymer Materials for High-Performance Triboelectric Nanogenerators [J].
Chen, Aihua ;
Zhang, Chen ;
Zhu, Guang ;
Wang, Zhong Lin .
ADVANCED SCIENCE, 2020, 7 (14)
[7]   Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy [J].
Chen, Jun ;
Yang, Jin ;
Li, Zhaoling ;
Fan, Xing ;
Zi, Yunlong ;
Jing, Qingshen ;
Guo, Hengyu ;
Wen, Zhen ;
Pradel, Ken C. ;
Niu, Simiao ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (03) :3324-3331
[8]   A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system [J].
Chen, Xin ;
Gao, Lingxiao ;
Chen, Junfei ;
Lu, Shan ;
Zhou, Hong ;
Wang, Tingting ;
Wang, Aobo ;
Zhang, Zhifei ;
Guo, Shifeng ;
Mu, Xiaojing ;
Wang, Zhong Lin ;
Yang, Ya .
NANO ENERGY, 2020, 69
[9]   Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure [J].
Cheng, Ping ;
Guo, Hengyu ;
Wen, Zhen ;
Zhang, Chunlei ;
Yin, Xing ;
Li, Xinyuan ;
Liu, Di ;
Song, Weixing ;
Sun, Xuhui ;
Wang, Jie ;
Wang, Zhong Lin .
NANO ENERGY, 2019, 57 :432-439
[10]   Nanocontact Electrification: Patterned Surface Charges Affecting Adhesion, Transfer, and Printing [J].
Cole, Jesse J. ;
Barry, Chad R. ;
Knuesel, Robert J. ;
Wang, Xinyu ;
Jacobs, Heiko O. .
LANGMUIR, 2011, 27 (11) :7321-7329