MoS2/Graphene Hybrid Nanoflowers with Enhanced Electrochemical Performances as Anode for Lithium-Ion Batteries

被引:139
作者
Li, Honglin [1 ]
Yu, Ke [1 ]
Fu, Hao [1 ]
Guo, Bangjun [1 ]
Lei, Xiang [1 ]
Zhu, Ziqiang [1 ]
机构
[1] E China Normal Univ, Dept Elect Engn, Key Lab Polar Mat & Devices, Minist Educ China, Shanghai 200241, Peoples R China
关键词
FINDING SADDLE-POINTS; ASSISTED SYNTHESIS; MOS2; NANOPARTICLES; COMPOSITES; GRAPHENE; HYDRODEOXYGENATION; ARCHITECTURES; NANOSHEETS; CAPACITY; BIOMASS;
D O I
10.1021/acs.jpcc.5b00890
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we studied the synthesis and electrochemical performance of MoS2 and reduced graphene oxide (rGO) hybrid nanoflowers for use as anode material in lithium ion batteries (LIBs). The morphology and microstructure of the samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). Herein, the composite nanoflowers delivered a significant enhanced reversible specific capacity and charge/discharge cycle stabilities as anode in comparison with pristine MoS2. Electrochemical impedance spectroscopy (EIS) measurements indicated that the incorporation of rGO significantly reduced the contact resistance and the improved electrochemical performances could be attributed to the synergy effect between the functions of MoS2 and rGO. A high reversible capacity of 1150 mAh/g at a current of 0.1 A/g could be retained without fading after 60 cycles. The rate performance of the composite was also improved, and the specific capacity remained at the relative high value of 890 mAh/g even at a current of 1 A/g. In order to further systematically study the mechanism of the improved LIBs performances for composite, we constructed the corresponding models based on experiment data and conducted a first-principles calculation. The nudged elastic band (NEB) method was employed to study the diffusion of Li in different structures. The calculated results proved that the diffusion barrier for Li in MoS2/graphene was significantly lower than that in pristine MoS2 and presented a theoretical explanation for a better diffusivity property. The high specific capacity and excellent cycling stability of these hybrid nanoflowers are competent as a promising anode material for high-performance LIBs.
引用
收藏
页码:7959 / 7968
页数:10
相关论文
共 50 条
  • [31] In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries
    Chang, Kun
    Chen, Weixiang
    CHEMICAL COMMUNICATIONS, 2011, 47 (14) : 4252 - 4254
  • [32] MoS2/graphene nanosheet composites prepared by xylitol-assisted ball milling as high-performance anode materials for lithium-ion batteries
    Zhong, Weixu
    Hong, Jiabin
    Wang, Chunxiang
    Li, Zhifeng
    Chen, Jun
    Dmytro, Sydorov
    IONICS, 2023, 29 (03) : 917 - 930
  • [33] Poly(diallyldimethylammonium chloride)-assisted synthesis of MoS2/graphene composites with enhanced electrochemical performances for reversible lithium storage
    Ye, Jianbo
    Chen, Weixiang
    Chen, Qiannan
    Yu, Zheting
    Lee, Jim Yang
    ELECTROCHIMICA ACTA, 2016, 190 : 538 - 547
  • [34] 1 T-rich MoS2/nitrogen-doped graphene composites: Advanced anode materials to improve the performance of lithium-ion batteries
    Zhao, Lianyu
    Wang, Yishan
    Wen, Guangwu
    Zhang, Xueqian
    Huang, Xiaoxiao
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [35] Preparation and electrochemical performances of CoO/3D graphene composite as anode for lithium-ion batteries
    Zhang, Linsen
    Wang, Zhitao
    Wang, Huan
    Yang, Kun
    Wang, Lizhen
    Li, Xiaofeng
    Zhang, Yong
    Dong, Huichao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 656 : 278 - 283
  • [36] Synthesis and electrochemical performance of a spherical flower-like MoS2 /graphene anode material for lithium ion batteries
    Mou Yan-pu
    Wang Cong
    Zhan Liang
    Liu Xiang
    Wang Yan-li
    NEW CARBON MATERIALS, 2016, 31 (06) : 609 - 614
  • [37] MoO3@MoS2 Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries
    Faizan, Muhammad
    Hussain, Sajjad
    Islam, Mobinul
    Kim, Ji-Young
    Han, Daseul
    Bae, Jee-Hwan
    Vikraman, Dhanasekaran
    Ali, Basit
    Abbas, Saleem
    Kim, Hyun-Seok
    Singh, Aditya Narayan
    Jung, Jongwan
    Nam, Kyung-Wan
    NANOMATERIALS, 2022, 12 (12)
  • [38] Interlayer-expanded MoS2/graphene composites as anode materials for high-performance lithium-ion batteries
    Wang, Yanjie
    Zhen, Mengmeng
    Liu, Huiling
    Wang, Cheng
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (10) : 3069 - 3076
  • [39] Improving Lithium-Ion Diffusion Kinetics in Nano-Si@C Anode Materials with Hierarchical MoS2 Decoration for High-Performance Lithium-Ion Batteries
    Ye, Xiongbiao
    Gan, Chuanhai
    Huang, Liuqing
    Qiu, Yiwei
    Xu, Ying
    Huang, Liuying
    Luo, Xuetao
    CHEMELECTROCHEM, 2021, 8 (07) : 1270 - 1279
  • [40] Hierarchical MoS2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries
    Yang, Lichun
    Wang, Sinong
    Mao, Jianjiang
    Deng, Junwen
    Gao, Qingsheng
    Tang, Yi
    Schmidt, Oliver G.
    ADVANCED MATERIALS, 2013, 25 (08) : 1180 - 1184