MoS2/Graphene Hybrid Nanoflowers with Enhanced Electrochemical Performances as Anode for Lithium-Ion Batteries

被引:143
作者
Li, Honglin [1 ]
Yu, Ke [1 ]
Fu, Hao [1 ]
Guo, Bangjun [1 ]
Lei, Xiang [1 ]
Zhu, Ziqiang [1 ]
机构
[1] E China Normal Univ, Dept Elect Engn, Key Lab Polar Mat & Devices, Minist Educ China, Shanghai 200241, Peoples R China
关键词
FINDING SADDLE-POINTS; ASSISTED SYNTHESIS; MOS2; NANOPARTICLES; COMPOSITES; GRAPHENE; HYDRODEOXYGENATION; ARCHITECTURES; NANOSHEETS; CAPACITY; BIOMASS;
D O I
10.1021/acs.jpcc.5b00890
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we studied the synthesis and electrochemical performance of MoS2 and reduced graphene oxide (rGO) hybrid nanoflowers for use as anode material in lithium ion batteries (LIBs). The morphology and microstructure of the samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). Herein, the composite nanoflowers delivered a significant enhanced reversible specific capacity and charge/discharge cycle stabilities as anode in comparison with pristine MoS2. Electrochemical impedance spectroscopy (EIS) measurements indicated that the incorporation of rGO significantly reduced the contact resistance and the improved electrochemical performances could be attributed to the synergy effect between the functions of MoS2 and rGO. A high reversible capacity of 1150 mAh/g at a current of 0.1 A/g could be retained without fading after 60 cycles. The rate performance of the composite was also improved, and the specific capacity remained at the relative high value of 890 mAh/g even at a current of 1 A/g. In order to further systematically study the mechanism of the improved LIBs performances for composite, we constructed the corresponding models based on experiment data and conducted a first-principles calculation. The nudged elastic band (NEB) method was employed to study the diffusion of Li in different structures. The calculated results proved that the diffusion barrier for Li in MoS2/graphene was significantly lower than that in pristine MoS2 and presented a theoretical explanation for a better diffusivity property. The high specific capacity and excellent cycling stability of these hybrid nanoflowers are competent as a promising anode material for high-performance LIBs.
引用
收藏
页码:7959 / 7968
页数:10
相关论文
共 38 条
[1]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[2]   In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang .
CHEMICAL COMMUNICATIONS, 2011, 47 (14) :4252-4254
[3]   Self-assembled MoS2-carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance [J].
Das, Shyamal K. ;
Mallavajula, Rajesh ;
Jayaprakash, Navaneedhakrishnan ;
Archer, Lynden A. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (26) :12988-12992
[4]   Facile synthesis of MoS2/MWNT anode material for high-performance lithium-ion batteries [J].
Gao, Peiyu ;
Yang, Zhanxu ;
Liu, Guomin ;
Qiao, Qingdong .
CERAMICS INTERNATIONAL, 2015, 41 (01) :1921-1925
[5]   Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts [J].
Grilc, M. ;
Likozar, B. ;
Levec, J. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 150 :275-287
[6]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[7]   Fabrication of 3D Hierarchical MoS2/Polyaniline and MoS2/C Architectures for Lithium-Ion Battery Applications [J].
Hu, Lianren ;
Ren, Yumei ;
Yang, Hongxia ;
Xu, Qun .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (16) :14644-14652
[8]   Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes [J].
Hu, Shan ;
Chen, Wen ;
Zhou, Jing ;
Yin, Fei ;
Uchaker, Evan ;
Zhang, Qifeng ;
Cao, Guozhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (21) :7862-7872
[9]   Structures and Phase Transition of a MoS2 Monolayer [J].
Kan, M. ;
Wang, J. Y. ;
Li, X. W. ;
Zhang, S. H. ;
Li, Y. W. ;
Kawazoe, Y. ;
Sun, Q. ;
Jena, P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (03) :1515-1522
[10]   Battery materials for ultrafast charging and discharging [J].
Kang, Byoungwoo ;
Ceder, Gerbrand .
NATURE, 2009, 458 (7235) :190-193