Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene

被引:21
|
作者
Guehlke, Marina [1 ]
Heiner, Zsuzsanna [1 ,2 ]
Kneipp, Janina [1 ,2 ]
机构
[1] Humboldt Univ, Dept Chem, Brook Taylor Str 2, D-12489 Berlin, Germany
[2] Humboldt Univ, Sch Analyt Sci Adlershof SALSA, Albert Einstein Str 5-9, D-12489 Berlin, Germany
关键词
RESONANCE RAMAN; BETA-CAROTENE; SELECTION-RULES; EXCITATION PROFILE; SINGLE-MOLECULE; SILVER; SPECTROSCOPY; SERS; SPECTRA; ABSORPTION;
D O I
10.1021/acs.jpcc.6b01895
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A thiol-modified carotene, 7'-apo-7'-(4-mercaptomethylphenyl)-beta-carotene, was used to obtain nonresonant surface-enhanced Raman scattering (SERS) spectra of carotene at an excitation wavelength of 1064 nm, which were compared with resonant SERS spectra at an excitation wavelength of 532 nm. These spectra and surface-enhanced hyper-Raman scattering (SEHRS) spectra of the functionalized carotene were compared with the spectra of nonmodified beta-carotene. Using SERS, normal Raman, and SEHRS spectra, all obtained for the resonant case, the interaction of the carotene molecules with silver nanoparticles, as well as the influence of the resonance enhancement and the SERS enhancement on the spectra, were investigated. The interaction with the silver surface occurs for both functionalized and nonfunctionalized beta-carotene, but only the stronger functionalization-induced interaction enables the acquisition of nonresonant SERS spectra of beta-carotene at low concentrations. The resonant SEHRS and SERS spectra are very similar. Nevertheless, the SEHRS spectra contain additional bands of infrared-active modes of carotene. Increased contributions from bands that experience low resonance enhancement point to a strong interaction between silver nanoparticles and electronic levels of the molecules, thereby giving rise to a decrease in the resonance enhancement in SERS and SEHRS.
引用
收藏
页码:20702 / 20709
页数:8
相关论文
共 50 条
  • [21] SURFACE-ENHANCED RAMAN-SCATTERING AT A FLAKE SILVER SURFACE
    HUDSON, M
    WATERS, DN
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1991, 47 (9-10) : 1467 - 1473
  • [22] Metal-Organic Semiconductor Nanostructures for Surface-Enhanced Raman Scattering
    Alessio, Priscila
    De Saja Saez, J. A.
    Aroca, Ricardo F.
    Constantino, Carlos J. L.
    APPLIED SPECTROSCOPY, 2011, 65 (02) : 152 - 158
  • [23] A Review on Surface-Enhanced Raman Scattering
    Pilot, Roberto
    Signorini, Raffaella
    Durante, Christian
    Orian, Laura
    Bhamidipati, Manjari
    Fabris, Laura
    BIOSENSORS-BASEL, 2019, 9 (02):
  • [24] Bio-probing with nonresonant surface-enhanced hyper-Raman scattering excited at 1,550 nm
    Heiner, Zsuzsanna
    Madzharova, Fani
    Zivanovic, Vesna
    Kneipp, Janina
    JOURNAL OF RAMAN SPECTROSCOPY, 2021, 52 (02) : 394 - 403
  • [25] Surface-enhanced Raman scattering of λ -DNA
    H. Wei
    H. Xu
    Applied Physics A, 2007, 89
  • [26] Surface-enhanced Raman scattering holography
    Liebel, Matz
    Pazos-Perez, Nicolas
    van Hulst, Niek F.
    Alvarez-Puebla, Ramon A.
    NATURE NANOTECHNOLOGY, 2020, 15 (12) : 1005 - U33
  • [27] Surface-enhanced Raman scattering of flavonoids
    Jurasekova, Z.
    Garcia-Ramos, J. V.
    Domingo, C.
    Sanchez-Cortes, S.
    JOURNAL OF RAMAN SPECTROSCOPY, 2006, 37 (11) : 1239 - 1241
  • [28] Dielectric-substrate-induced surface-enhanced Raman scattering
    Glembocki, O. J.
    Rendell, R. W.
    Alexson, D. A.
    Prokes, S. M.
    Fu, A.
    Mastro, M. A.
    PHYSICAL REVIEW B, 2009, 80 (08)
  • [29] Plastic Substrates for Surface-Enhanced Raman Scattering
    Geissler, Matthias
    Li, Kebin
    Cui, Bo
    Clime, Liviu
    Veres, Teodor
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (40) : 17296 - 17300
  • [30] Molecular Orbital Gating Surface-Enhanced Raman Scattering
    Guo, Chenyang
    Chen, Xing
    Ding, Song-Yuan
    Mayer, Dirk
    Wang, Qingling
    Zhao, Zhikai
    Ni, Lifa
    Liu, Haitao
    Lee, Takhee
    Xu, Bingqian
    Xiang, Dong
    ACS NANO, 2018, 12 (11) : 11229 - 11235