Dynamic-Adaptive AI Solutions for Network Slicing Management in Satellite-Integrated B5G Systems

被引:20
作者
Lei, Lei [1 ,4 ]
Yuan, Yaxiong [2 ]
Vu, Thang X. [2 ]
Chatzinotas, Symeon [3 ]
Minardi, Mario [3 ]
Montoya, Jesus Fabian Mendoza [2 ]
机构
[1] Luxembourg Univ, Interdisciplinary Ctr Secur Reliabil & Trust SnT, Esch Sur Alzette, Luxembourg
[2] Luxembourg Univ, SnT, Esch Sur Alzette, Luxembourg
[3] Luxembourg Univ, SnT, SIGCOM Res Grp, Esch Sur Alzette, Luxembourg
[4] Xi An Jiao Tong Univ, Xian, Peoples R China
来源
IEEE NETWORK | 2021年 / 35卷 / 06期
关键词
Wireless communication; 5G mobile communication; Network slicing; Complexity theory; Resource management; Artificial intelligence;
D O I
10.1109/MNET.111.2100206
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The integrated terrestrial and non-terrestrial networks in 5G and beyond 5G are envisioned to support dynamic, seamless, and differentiated services for emerging use cases with stringent requirements. Such service heterogeneity and rapid growth in network complexity pose difficulties in network management and resource orchestration. Network slicing paves the way for delivering highly customized services and enabling service-oriented resource allocation. In this context, artificial intelligence (AI) becomes a key enabler for network slicing management. However, AI-based approaches encounter critical challenges in adapting to dynamic and complex wireless environments. In this article, first, we aim to provide a comprehensive understanding of these challenges, open issues, and future research opportunities. Second, we highlight the investigations on dynamic-adaptive AI solutions for dealing with the effect of concept drift. Third, we identify typical dynamic scenarios in case studies and provide numerical results to illustrate the effectiveness of the discussed AI solutions.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 15 条
  • [1] Satellite Networking Integration in the 5G Ecosystem: Research Trends and Open Challenges
    Boero, Luca
    Bruschi, Roberto
    Davoli, Franco
    Marchese, Mario
    Patrone, Fabio
    [J]. IEEE NETWORK, 2018, 32 (05): : 9 - 15
  • [2] LEARN TO CACHE: MACHINE LEARNING FOR NETWORK EDGE CACHING IN THE BIG DATA ERA
    Chang, Zheng
    Lei, Lei
    Zhou, Zhenyu
    Mao, Shiwen
    Ristaniemi, Tapani
    [J]. IEEE WIRELESS COMMUNICATIONS, 2018, 25 (03) : 28 - 35
  • [3] An extensible network slicing framework for satellite integration into 5G
    Drif, Youssouf
    Chaput, Emmanuel
    Lavinal, Emmanuel
    Berthou, Pascal
    Tiomela Jou, Boris
    Gremillet, Olivier
    Arnal, Fabrice
    [J]. INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2021, 39 (04) : 339 - 357
  • [4] Network Slicing in 5G: Survey and Challenges
    Foukas, Xenofon
    Patounas, Georgios
    Elmokashfi, Ahmed
    Marina, Mahesh K.
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (05) : 94 - 100
  • [5] Non-Terrestrial Networks in the 6G Era: Challenges and Opportunities
    Giordani, Marco
    Zorzi, Michele
    [J]. IEEE NETWORK, 2021, 35 (02): : 244 - 251
  • [6] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [7] Customized Slicing for 6G: Enforcing Artificial Intelligence on Resource Management
    Guan, Wanqing
    Zhang, Haijun
    Leung, Victor C. M.
    [J]. IEEE NETWORK, 2021, 35 (05): : 264 - 271
  • [8] Reinforcement Learning Based Capacity Management in Multi-Layer Satellite Networks
    Jiang, Chunxiao
    Zhu, Xiangming
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (07) : 4685 - 4699
  • [9] Kang J., 2020, 6G WIRELESS SUMMIT
  • [10] Satellite Communications in the New Space Era: A Survey and Future Challenges
    Kodheli, Oltjon
    Lagunas, Eva
    Maturo, Nicola
    Sharma, Shree Krishna
    Shankar, Bhavani
    Montoya, Jesus Fabian Mendoza
    Duncan, Juan Carlos Merlano
    Spano, Danilo
    Chatzinotas, Symeon
    Kisseleff, Steven
    Querol, Jorge
    Lei, Lei
    Vu, Thang X.
    Goussetis, George
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (01): : 70 - 109