Schwarz Waveform Relaxation Methods for Systems of Semi-Linear Reaction-Diffusion Equations

被引:4
作者
Descombes, Stephane [1 ]
Dolean, Victorita [1 ]
Gander, Martin J. [2 ]
机构
[1] Univ Nice Sophia Antipolis, Lab JA Dieudonne, UMR CNRS 6621, F-06018 Nice 02, France
[2] Univ Geneva, Sect Mathematiques, CH-1211 Geneva 4, Switzerland
来源
DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX | 2011年 / 78卷
关键词
D O I
10.1007/978-3-642-11304-8_49
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Schwarz waveform relaxation methods have been studied for a wide range of scalar linear partial differential equations (PDEs) of parabolic and hyperbolic type. They are based on a space-time decomposition of the computational domain and the subdomain iteration uses an overlapping decomposition in space. There are only few convergence studies for non-linear PDEs. We analyze in this paper the convergence of Schwarz waveform relaxation applied to systems of semi-linear reaction-diffusion equations. We show that the algorithm converges linearly under certain conditions over long time intervals. We illustrate our results, and further possible convergence behavior, with numerical experiments.
引用
收藏
页码:423 / +
页数:2
相关论文
共 12 条
[1]   Overlapping Schwarz waveform relaxation for convection-dominated nonlinear conservation laws [J].
Gander, MJ ;
Rohde, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) :415-439
[2]  
Gander MJ, 1999, NUMER LINEAR ALGEBR, V6, P125, DOI 10.1002/(SICI)1099-1506(199903)6:2<125::AID-NLA152>3.0.CO
[3]  
2-4
[4]   Optimal Schwarz waveform relaxation for the one dimensional wave equation [J].
Gander, MJ ;
Halpern, L ;
Nataf, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (05) :1643-1681
[5]   Space-time continuous analysis of waveform relaxation for the heat equation [J].
Gander, MJ ;
Stuart, AM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :2014-2031
[6]  
GANDER MJ, 1999, 11 INT C DOM DEC MET
[7]  
GANDER MJ, 1998, CONT MATH AMS, V218
[8]   Space-time domain decomposition for parabolic problems [J].
Giladi, E ;
Keller, HB .
NUMERISCHE MATHEMATIK, 2002, 93 (02) :279-313
[9]  
Henry D., 1981, GEOMETRIC THEORY SEM
[10]  
Murray J.D, 1989, BIOMATHEMATICS, V19