Preserving Semantic Relations for Zero-Shot Learning
被引:178
作者:
Annadani, Yashas
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Technol, Mangalore, Karnataka, India
IIIT H, Hyderabad, Telangana, India
NITK, Mangalore, India
IISc, Bengaluru, IndiaNatl Inst Technol, Mangalore, Karnataka, India
Annadani, Yashas
[1
,3
,4
,5
]
论文数: 引用数:
h-index:
机构:
Biswas, Soma
[2
]
机构:
[1] Natl Inst Technol, Mangalore, Karnataka, India
[2] Indian Inst Sci, Bengaluru, India
[3] IIIT H, Hyderabad, Telangana, India
[4] NITK, Mangalore, India
[5] IISc, Bengaluru, India
来源:
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
|
2018年
关键词:
D O I:
10.1109/CVPR.2018.00793
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Zero-shot learning has gained popularity due to its potential to scale recognition models without requiring additional training data. This is usually achieved by associating categories with their semantic information like attributes. However, we believe that the potential offered by this paradigm is not yet fully exploited. In this work, we propose to utilize the structure of the space spanned by the attributes using a set of relations. We devise objective functions to preserve these relations in the embedding space, thereby inducing semanticity to the embedding space. Through extensive experimental evaluation on five benchmark datasets, we demonstrate that inducing semanticity to the embedding space is beneficial for zero-shot learning. The proposed approach outperforms the state-of-the-art on the standard zero-shot setting as well as the more realistic generalized zero-shot setting. We also demonstrate how the proposed approach can be useful for making approximate semantic inferences about an image belonging to a category for which attribute information is not available.
机构:
Jozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
Jozef Stefan Int Postgrad Sch, Ljubljana 1000, SloveniaJozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
Tomasev, Nenad
Radovanovic, Milos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, SerbiaJozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
Radovanovic, Milos
Mladenic, Dunja
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
Jozef Stefan Int Postgrad Sch, Ljubljana 1000, SloveniaJozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
Mladenic, Dunja
Ivanovic, Mirjana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, SerbiaJozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
机构:
Jozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
Jozef Stefan Int Postgrad Sch, Ljubljana 1000, SloveniaJozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
Tomasev, Nenad
Radovanovic, Milos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, SerbiaJozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
Radovanovic, Milos
Mladenic, Dunja
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
Jozef Stefan Int Postgrad Sch, Ljubljana 1000, SloveniaJozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia
Mladenic, Dunja
Ivanovic, Mirjana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, SerbiaJozef Stefan Inst, Artificial Intelligence Lab, Ljubljana 1000, Slovenia