Stabilization of fractional-order singular uncertain systems

被引:75
作者
Ji, Yude [1 ,2 ]
Qiu, Jiqing [2 ]
机构
[1] Hebei Normal Univ, Coll Math & Sci Informat, Shijiazhuang 050024, Hebei, Peoples R China
[2] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
关键词
Fractional-order systems; Feedback controller; Linear matrix inequality (LMI); ROBUST STABILITY ANALYSIS; LINEAR-SYSTEMS;
D O I
10.1016/j.isatra.2014.11.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the state and static output feedback stabilization for fractional-order singular (FOS) uncertain linear systems with the fractional commensurate order 0 < alpha < 1, respectively. The objective is to design suitable feedback controllers that guarantee the stability of resulting closed-loop control systems. First, the sufficient conditions for robust asymptotical stability of the closed-loop control systems are presented. Next, based on the matrix's singular value decomposition (SVD) and linear matrix inequality (LMI) technics, some new results in the form of LMI are developed to the state and static output feedback controller synthesis for the FOS systems. Finally, three numerical examples are given to illustrate the effectiveness of the proposed design methods. (C) 2014 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 50 条
[41]   Multiconsensus of fractional-order uncertain multi-agent systems [J].
Chen, Jie ;
Guan, Zhi-Hong ;
Li, Tao ;
Zhang, Ding-Xue ;
Ge, Ming-Feng ;
Zheng, Ding-Fu .
NEUROCOMPUTING, 2015, 168 :698-705
[42]   Computation of spectral sets for uncertain linear fractional-order systems [J].
Nataraj, P. S. V. ;
Kalla, Rambabu .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) :946-955
[43]   A numerical investigation for robust stability of fractional-order uncertain systems [J].
Senol, Bilal ;
Ates, Abdullah ;
Alagoz, B. Baykant ;
Yeroglu, Celaleddin .
ISA TRANSACTIONS, 2014, 53 (02) :189-198
[44]   Fractional-Order Adaptive Fault Estimation for a Class of Nonlinear Fractional-Order Systems [J].
N'Doye, Ibrahima ;
Laleg-Kirati, Taous-Meriem .
2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, :3804-3809
[45]   Synthesis of Sliding Mode Control for a Class of Uncertain Singular Fractional-Order Systems-Based Restricted Equivalent [J].
Meng, Bo ;
Wang, Xinhe ;
Wang, Zhen .
IEEE ACCESS, 2019, 7 :96191-96197
[46]   Asymptotical stabilization of the nonlinear upper triangular fractional-order systems [J].
Zhao, Yige ;
Sun, Yibing ;
Wang, Yilin ;
Bai, Zhanbing .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[47]   Stabilization of equilibrium points for commensurate fractional-order nonlinear systems [J].
Guo, Yanping ;
Du, Mingxing ;
Fan, Qiaoqiao ;
Ji, Yude .
PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, :10475-10480
[48]   Asymptotical stabilization of fractional-order linear systems in triangular form [J].
Zhang, Xianfu ;
Liu, Lu ;
Feng, Gang ;
Wang, Yuzhen .
AUTOMATICA, 2013, 49 (11) :3315-3321
[49]   Stabilization of Fractional-Order Linear Systems with State and Input Delay [J].
Ammour, Amar Si ;
Djennoune, Said ;
Aggoune, Woihida ;
Bettayeb, Maamar .
ASIAN JOURNAL OF CONTROL, 2015, 17 (05) :1946-1954
[50]   Adaptive Stabilization for a Class of Fractional-Order Systems with Nonlinear Uncertainty [J].
Jmal, A. ;
Naifar, O. ;
Ben Makhlouf, A. ;
Derbel, N. ;
Hammami, M. A. .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (03) :2195-2203