Enhancement of Thermoelectric Performance of Sr0.9-xNd0.1Ti0.9Nb0.1O3 Ceramics by Introducing Sr Vacancies

被引:3
作者
Chen, Yufei [1 ]
Liu, Jian [1 ,2 ]
Li, Xin [3 ]
Li, Yi [1 ]
Su, Wenbin [1 ]
Li, Jichao [1 ]
Zhao, LanLing [1 ]
Wang, ChunLei [1 ,3 ]
Lu, Minghui [2 ]
机构
[1] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2018年 / 215卷 / 21期
基金
中国国家自然科学基金;
关键词
Sr0.9-xNd0.1Ti0.9Nb0.1O3; Sr vacancies; thermoelectric; ZT; DEFICIENT SRTIO3 CERAMICS; HIGH-FIGURE; MERIT; LA; POWER;
D O I
10.1002/pssa.201800459
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoelectric properties of Sr-deficient Sr0.9-xNd0.1Ti0.9Nb0.1O3 ceramics are investigated in this work. Because of the significantly enhanced carrier mobility by introducing Sr vacancies, both of electrical conductivity and absolute Seebeck coefficient are enhanced, resulting in the improvement of power factor. Meanwhile, the lattice thermal conductivity decreases with the increasing content of Sr vacancies, indicating that Sr vacancies act as point defects and scatter phonons. Consequently, thermoelectric performance of Sr0.9-xNd0.1Ti0.9Nb0.1O3 ceramics is enhanced obviously by introducing Sr vacancies, and the figure of merit ZT reaches a maximum of 0.32 at 1073 K in the sample x = 0.04, increasing by 60% as compared with that of the sample x = 0.
引用
收藏
页数:4
相关论文
共 28 条
[1]   Concurrent La and A-Site Vacancy Doping Modulates the Thermoelectric Response of SrTiO3: Experimental and Computational Evidence [J].
Azough, Feridoon ;
Jackson, Samuel S. ;
Ekren, Dursun ;
Freer, Robert ;
Molinari, Marco ;
Yeandel, Stephen R. ;
Panchmatia, Pooja M. ;
Parker, Stephen C. ;
Maldonado, David Hernandez ;
Kepaptsoglou, Demie M. ;
Ramasse, Quentin M. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) :41988-42000
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   Thermoelectric and Magnetic Properties of Ca0.98RE0.02MnO3-δ (RE = Sm, Gd, and Dy) [J].
Bhaskar, Ankam ;
Liu, Chia-Jyi ;
Yuan, J. J. .
JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (09) :2338-2344
[4]   Fabrication and Characterization of Fully Flattened Carbon Nanotubes: A New Graphene Nanoribbon Analogue [J].
Choi, D. H. ;
Wang, Q. ;
Azuma, Y. ;
Majima, Y. ;
Warner, J. H. ;
Miyata, Y. ;
Shinohara, H. ;
Kitaura, R. .
SCIENTIFIC REPORTS, 2013, 3
[5]   Continuous functionally graded material to improve the thermoelectric properties of ZnO [J].
Cramer, Corson L. ;
Gonzalez-Julian, Jesus ;
Colasuonno, Paul S. ;
Holland, Troy B. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (15) :4693-4700
[6]   Oxide materials for high temperature thermoelectric energy conversion [J].
Fergus, Jeffrey W. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (03) :525-540
[7]   Cubic AgPbmSbTe2+m:: Bulk thermoelectric materials with high figure of merit [J].
Hsu, KF ;
Loo, S ;
Guo, F ;
Chen, W ;
Dyck, JS ;
Uher, C ;
Hogan, T ;
Polychroniadis, EK ;
Kanatzidis, MG .
SCIENCE, 2004, 303 (5659) :818-821
[8]   Large Seebeck coefficients and thermoelectric power factor of La-doped SrTiO3 thin films [J].
Jalan, Bharat ;
Stemmer, Susanne .
APPLIED PHYSICS LETTERS, 2010, 97 (04)
[9]   Characterization of Lorenz number with Seebeck coefficient measurement [J].
Kim, Hyun-Sik ;
Gibbs, Zachary M. ;
Tang, Yinglu ;
Wang, Heng ;
Snyder, G. Jeffrey .
APL MATERIALS, 2015, 3 (04)
[10]   Thermoelectric properties of unoxidized graphene/Bi2Te2.7Se0.3 composites synthesized by exfoliation/re-assembly method [J].
Kim, Jin Il ;
Lee, Eun Sil ;
Kim, Jong-Young ;
Choi, Soon-Mok ;
Lee, Kyu Hyoung ;
Seo, Won-Seon .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2014, 8 (04) :357-361