Second-order integrable Lagrangians and WDVV equations

被引:2
作者
Ferapontov, E. V. [1 ,2 ]
Pavlov, M. V. [3 ]
Xue, Lingling [3 ]
机构
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Russian Acad Sci, Inst Math, Ufa Fed Res Ctr, 112 Chernyshevsky St, Ufa 450008, Russia
[3] Ningbo Univ, Dept Appl Math, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Second-order Lagrangians; Systems of hydrodynamic type; Integrability (diagonalisability) conditions; Jacobi theta functions; Chazy equation; WDVV equations; HYDRODYNAMIC TYPE; SYSTEMS; GEOMETRY;
D O I
10.1007/s11005-021-01403-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the integrability of Euler-Lagrange equations associated with 2D second-order Lagrangians of the form integral f (u(xx), u(xy), u(yy)) dxdy. By deriving integrability conditions for the Lagrangian density f, examples of integrable Lagrangians expressible via elementary functions, Jacobi theta functions and dilogarithms are constructed. Alink of second-order integrable Lagrangians to WDVV equations is established. Generalisations to 3D second-order integrable Lagrangians are also discussed.
引用
收藏
页数:33
相关论文
共 39 条
  • [1] Almeida G.F., ARXIV190701436V2
  • [2] [Anonymous], 1985, The Theory of Jacobi Forms
  • [3] [Anonymous], 1984, APPL MATH SCI
  • [4] Frobenius manifold structure on orbit space of Jacobi groups; Part II
    Bertola, M
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 13 (03) : 213 - 233
  • [5] Integrable geodesic flows on 2-torus: Formal solutions and variational principle
    Bialy, Misha
    Mironov, Andrey E.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2015, 87 : 39 - 47
  • [6] LATTICE AND Q-DIFFERENCE DARBOUX-ZAKHAROV-MANAKOV SYSTEMS VIA PARTIAL-DERIVATIVE-DRESSING METHOD
    BOGDANOV, LV
    KONOPELCHENKO, BG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05): : L173 - L178
  • [7] Egorov hydrodynamic chains, the Chazy equation, and SL(2, C)
    Buchstaber, VM
    Leykin, DV
    Pavlov, MV
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2003, 37 (04) : 251 - 262
  • [8] Chazy J, 1910, CR HEBD ACAD SCI, V150, P456
  • [9] Symmetry and the Chazy equation
    Clarkson, PA
    Olver, PJ
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 124 (01) : 225 - 246
  • [10] Conte R., 1999, The Painleve property: One Century Later, P287